Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298272844> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4298272844 abstract "Our aging population increasingly suffers from multiple chronic diseases simultaneously, necessitating the comprehensive treatment of these conditions. Finding the optimal set of drugs for a combinatorial set of diseases is a combinatorial pattern exploration problem. Association rule mining is a popular tool for such problems, but the requirement of health care for finding causal, rather than associative, patterns renders association rule mining unsuitable. To address this issue, we propose a novel framework based on the Rubin-Neyman causal model for extracting causal rules from observational data, correcting for a number of common biases. Specifically, given a set of interventions and a set of items that define subpopulations (e.g., diseases), we wish to find all subpopulations in which effective intervention combinations exist and in each such subpopulation, we wish to find all intervention combinations such that dropping any intervention from this combination will reduce the efficacy of the treatment. A key aspect of our framework is the concept of closed intervention sets which extend the concept of quantifying the effect of a single intervention to a set of concurrent interventions. We also evaluated our causal rule mining framework on the Electronic Health Records (EHR) data of a large cohort of patients from Mayo Clinic and showed that the patterns we extracted are sufficiently rich to explain the controversial findings in the medical literature regarding the effect of a class of cholesterol drugs on Type-II Diabetes Mellitus (T2DM)." @default.
- W4298272844 created "2022-10-01" @default.
- W4298272844 creator A5003976436 @default.
- W4298272844 creator A5022878003 @default.
- W4298272844 creator A5023035268 @default.
- W4298272844 creator A5046038472 @default.
- W4298272844 creator A5050008389 @default.
- W4298272844 creator A5082618206 @default.
- W4298272844 creator A5089436894 @default.
- W4298272844 date "2016-11-14" @default.
- W4298272844 modified "2023-09-26" @default.
- W4298272844 title "Causal Inference in Observational Data" @default.
- W4298272844 doi "https://doi.org/10.48550/arxiv.1611.04660" @default.
- W4298272844 hasPublicationYear "2016" @default.
- W4298272844 type Work @default.
- W4298272844 citedByCount "0" @default.
- W4298272844 crossrefType "posted-content" @default.
- W4298272844 hasAuthorship W4298272844A5003976436 @default.
- W4298272844 hasAuthorship W4298272844A5022878003 @default.
- W4298272844 hasAuthorship W4298272844A5023035268 @default.
- W4298272844 hasAuthorship W4298272844A5046038472 @default.
- W4298272844 hasAuthorship W4298272844A5050008389 @default.
- W4298272844 hasAuthorship W4298272844A5082618206 @default.
- W4298272844 hasAuthorship W4298272844A5089436894 @default.
- W4298272844 hasBestOaLocation W42982728441 @default.
- W4298272844 hasConcept C118552586 @default.
- W4298272844 hasConcept C119857082 @default.
- W4298272844 hasConcept C124101348 @default.
- W4298272844 hasConcept C142724271 @default.
- W4298272844 hasConcept C154945302 @default.
- W4298272844 hasConcept C158600405 @default.
- W4298272844 hasConcept C177264268 @default.
- W4298272844 hasConcept C193524817 @default.
- W4298272844 hasConcept C199360897 @default.
- W4298272844 hasConcept C23131810 @default.
- W4298272844 hasConcept C2522767166 @default.
- W4298272844 hasConcept C27415008 @default.
- W4298272844 hasConcept C2776214188 @default.
- W4298272844 hasConcept C2780665704 @default.
- W4298272844 hasConcept C2908647359 @default.
- W4298272844 hasConcept C41008148 @default.
- W4298272844 hasConcept C71924100 @default.
- W4298272844 hasConcept C99454951 @default.
- W4298272844 hasConceptScore W4298272844C118552586 @default.
- W4298272844 hasConceptScore W4298272844C119857082 @default.
- W4298272844 hasConceptScore W4298272844C124101348 @default.
- W4298272844 hasConceptScore W4298272844C142724271 @default.
- W4298272844 hasConceptScore W4298272844C154945302 @default.
- W4298272844 hasConceptScore W4298272844C158600405 @default.
- W4298272844 hasConceptScore W4298272844C177264268 @default.
- W4298272844 hasConceptScore W4298272844C193524817 @default.
- W4298272844 hasConceptScore W4298272844C199360897 @default.
- W4298272844 hasConceptScore W4298272844C23131810 @default.
- W4298272844 hasConceptScore W4298272844C2522767166 @default.
- W4298272844 hasConceptScore W4298272844C27415008 @default.
- W4298272844 hasConceptScore W4298272844C2776214188 @default.
- W4298272844 hasConceptScore W4298272844C2780665704 @default.
- W4298272844 hasConceptScore W4298272844C2908647359 @default.
- W4298272844 hasConceptScore W4298272844C41008148 @default.
- W4298272844 hasConceptScore W4298272844C71924100 @default.
- W4298272844 hasConceptScore W4298272844C99454951 @default.
- W4298272844 hasLocation W42982728441 @default.
- W4298272844 hasLocation W42982728442 @default.
- W4298272844 hasLocation W42982728443 @default.
- W4298272844 hasOpenAccess W4298272844 @default.
- W4298272844 hasPrimaryLocation W42982728441 @default.
- W4298272844 hasRelatedWork W107971435 @default.
- W4298272844 hasRelatedWork W2347219288 @default.
- W4298272844 hasRelatedWork W2348097614 @default.
- W4298272844 hasRelatedWork W2348925352 @default.
- W4298272844 hasRelatedWork W2938390373 @default.
- W4298272844 hasRelatedWork W2945267649 @default.
- W4298272844 hasRelatedWork W3037429569 @default.
- W4298272844 hasRelatedWork W3099235775 @default.
- W4298272844 hasRelatedWork W4303424916 @default.
- W4298272844 hasRelatedWork W4309924728 @default.
- W4298272844 isParatext "false" @default.
- W4298272844 isRetracted "false" @default.
- W4298272844 workType "article" @default.