Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298305846> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4298305846 abstract "When can reliable inference be drawn in the Big Data context? This paper presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics the dataset is often variable-rich but sample-starved: a regime where the number $n$ of acquired samples (statistical replicates) is far fewer than the number $p$ of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for Big Data. Sample complexity however has received relatively less attention, especially in the setting when the sample size $n$ is fixed, and the dimension $p$ grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. We demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks." @default.
- W4298305846 created "2022-10-02" @default.
- W4298305846 creator A5077692655 @default.
- W4298305846 creator A5091424272 @default.
- W4298305846 date "2015-05-10" @default.
- W4298305846 modified "2023-09-27" @default.
- W4298305846 title "Foundational principles for large scale inference: Illustrations through correlation mining" @default.
- W4298305846 doi "https://doi.org/10.48550/arxiv.1505.02475" @default.
- W4298305846 hasPublicationYear "2015" @default.
- W4298305846 type Work @default.
- W4298305846 citedByCount "0" @default.
- W4298305846 crossrefType "posted-content" @default.
- W4298305846 hasAuthorship W4298305846A5077692655 @default.
- W4298305846 hasAuthorship W4298305846A5091424272 @default.
- W4298305846 hasBestOaLocation W42983058461 @default.
- W4298305846 hasConcept C105795698 @default.
- W4298305846 hasConcept C114614502 @default.
- W4298305846 hasConcept C121332964 @default.
- W4298305846 hasConcept C129848803 @default.
- W4298305846 hasConcept C134306372 @default.
- W4298305846 hasConcept C154945302 @default.
- W4298305846 hasConcept C166957645 @default.
- W4298305846 hasConcept C182365436 @default.
- W4298305846 hasConcept C184898388 @default.
- W4298305846 hasConcept C198531522 @default.
- W4298305846 hasConcept C205649164 @default.
- W4298305846 hasConcept C2776214188 @default.
- W4298305846 hasConcept C2778755073 @default.
- W4298305846 hasConcept C2779343474 @default.
- W4298305846 hasConcept C33676613 @default.
- W4298305846 hasConcept C33923547 @default.
- W4298305846 hasConcept C41008148 @default.
- W4298305846 hasConcept C58640448 @default.
- W4298305846 hasConcept C97355855 @default.
- W4298305846 hasConceptScore W4298305846C105795698 @default.
- W4298305846 hasConceptScore W4298305846C114614502 @default.
- W4298305846 hasConceptScore W4298305846C121332964 @default.
- W4298305846 hasConceptScore W4298305846C129848803 @default.
- W4298305846 hasConceptScore W4298305846C134306372 @default.
- W4298305846 hasConceptScore W4298305846C154945302 @default.
- W4298305846 hasConceptScore W4298305846C166957645 @default.
- W4298305846 hasConceptScore W4298305846C182365436 @default.
- W4298305846 hasConceptScore W4298305846C184898388 @default.
- W4298305846 hasConceptScore W4298305846C198531522 @default.
- W4298305846 hasConceptScore W4298305846C205649164 @default.
- W4298305846 hasConceptScore W4298305846C2776214188 @default.
- W4298305846 hasConceptScore W4298305846C2778755073 @default.
- W4298305846 hasConceptScore W4298305846C2779343474 @default.
- W4298305846 hasConceptScore W4298305846C33676613 @default.
- W4298305846 hasConceptScore W4298305846C33923547 @default.
- W4298305846 hasConceptScore W4298305846C41008148 @default.
- W4298305846 hasConceptScore W4298305846C58640448 @default.
- W4298305846 hasConceptScore W4298305846C97355855 @default.
- W4298305846 hasLocation W42983058461 @default.
- W4298305846 hasLocation W42983058462 @default.
- W4298305846 hasLocation W42983058463 @default.
- W4298305846 hasOpenAccess W4298305846 @default.
- W4298305846 hasPrimaryLocation W42983058461 @default.
- W4298305846 hasRelatedWork W1771779360 @default.
- W4298305846 hasRelatedWork W1988747059 @default.
- W4298305846 hasRelatedWork W1993731342 @default.
- W4298305846 hasRelatedWork W2119095362 @default.
- W4298305846 hasRelatedWork W2172032168 @default.
- W4298305846 hasRelatedWork W2290081135 @default.
- W4298305846 hasRelatedWork W3022782703 @default.
- W4298305846 hasRelatedWork W3210933308 @default.
- W4298305846 hasRelatedWork W4282591073 @default.
- W4298305846 hasRelatedWork W871906761 @default.
- W4298305846 isParatext "false" @default.
- W4298305846 isRetracted "false" @default.
- W4298305846 workType "article" @default.