Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298325864> ?p ?o ?g. }
- W4298325864 endingPage "e00584" @default.
- W4298325864 startingPage "e00584" @default.
- W4298325864 abstract "Soil texture classes (STCs) influence the physical, chemical and biological properties of the soil, and accurate spatial predictions of STCs are essential for agro-ecological modeling. The purpose of this study was to assess the capabilities of environmental covariates derived from Landsat 8 OLI Science products and a digital elevation model (DEM), as well as three machine learning methods, to provide an accurate and reliable classification of soil texture classes. Estimation efficiency of soil texture classes was investigated using Decision tree (DT), Random forest (RF), and Support vector machine (SVM) algorithms in an area with Fluvisols and Vertisols as predominant reference soil groups in Northwestern Türkiye (Lake of Manyas). The models were validated using the leave-one-out, cross-validation technique. The best of the three machine learning models for soil texture classification was RF, with an overall accuracy of 0.63 and a kappa index value of 0.14, according to the accuracy evaluation. The RF algorithm generated a map whose findings were more consistent with the real environment using the confusion index (RF:0.30) and abundance index (RF:1.0) values as uncertainty criteria. The most important predictor of soil texture classes was the topographic wetness index (mean decrease accuracy: 3%) for tree-based learning algorithms, followed by other indexes based on satellite data. These findings will contribute to support sustainable soil management techniques in a location with a large degree of topsoil texture diversity." @default.
- W4298325864 created "2022-10-02" @default.
- W4298325864 creator A5004345367 @default.
- W4298325864 creator A5053144389 @default.
- W4298325864 creator A5073268640 @default.
- W4298325864 creator A5090724176 @default.
- W4298325864 date "2022-12-01" @default.
- W4298325864 modified "2023-09-30" @default.
- W4298325864 title "Digital mapping for soil texture class prediction in northwestern Türkiye by different machine learning algorithms" @default.
- W4298325864 cites W1972617376 @default.
- W4298325864 cites W1972933709 @default.
- W4298325864 cites W2002709469 @default.
- W4298325864 cites W2008432657 @default.
- W4298325864 cites W2009063009 @default.
- W4298325864 cites W2027943960 @default.
- W4298325864 cites W2037308434 @default.
- W4298325864 cites W2049842380 @default.
- W4298325864 cites W2050179592 @default.
- W4298325864 cites W2054325787 @default.
- W4298325864 cites W2066730534 @default.
- W4298325864 cites W2084341220 @default.
- W4298325864 cites W2085049715 @default.
- W4298325864 cites W2089777064 @default.
- W4298325864 cites W2104279568 @default.
- W4298325864 cites W2116395914 @default.
- W4298325864 cites W2147752146 @default.
- W4298325864 cites W2162162239 @default.
- W4298325864 cites W2163369992 @default.
- W4298325864 cites W2216946510 @default.
- W4298325864 cites W2318568688 @default.
- W4298325864 cites W2524681175 @default.
- W4298325864 cites W2547268326 @default.
- W4298325864 cites W2558302705 @default.
- W4298325864 cites W2756373754 @default.
- W4298325864 cites W2767202613 @default.
- W4298325864 cites W2774174446 @default.
- W4298325864 cites W2782582361 @default.
- W4298325864 cites W2789728000 @default.
- W4298325864 cites W2796010457 @default.
- W4298325864 cites W2897516116 @default.
- W4298325864 cites W2910695991 @default.
- W4298325864 cites W2911323052 @default.
- W4298325864 cites W2911964244 @default.
- W4298325864 cites W2920930972 @default.
- W4298325864 cites W2921398857 @default.
- W4298325864 cites W2922438723 @default.
- W4298325864 cites W2946652468 @default.
- W4298325864 cites W2951244100 @default.
- W4298325864 cites W2956919865 @default.
- W4298325864 cites W2975249695 @default.
- W4298325864 cites W2975837696 @default.
- W4298325864 cites W2984096509 @default.
- W4298325864 cites W2991645510 @default.
- W4298325864 cites W2995250794 @default.
- W4298325864 cites W3037975905 @default.
- W4298325864 cites W3041490948 @default.
- W4298325864 cites W3043480203 @default.
- W4298325864 cites W3064185571 @default.
- W4298325864 cites W3083512445 @default.
- W4298325864 cites W3086056576 @default.
- W4298325864 cites W3087686770 @default.
- W4298325864 cites W3093338522 @default.
- W4298325864 cites W3104233426 @default.
- W4298325864 cites W3111257695 @default.
- W4298325864 cites W3124683746 @default.
- W4298325864 cites W3135678101 @default.
- W4298325864 cites W3138298839 @default.
- W4298325864 cites W3162737829 @default.
- W4298325864 cites W3165133289 @default.
- W4298325864 cites W3165945703 @default.
- W4298325864 cites W3215367274 @default.
- W4298325864 cites W4205924964 @default.
- W4298325864 cites W4214763636 @default.
- W4298325864 cites W4239510810 @default.
- W4298325864 cites W4281766559 @default.
- W4298325864 cites W4293723957 @default.
- W4298325864 cites W4307701121 @default.
- W4298325864 doi "https://doi.org/10.1016/j.geodrs.2022.e00584" @default.
- W4298325864 hasPublicationYear "2022" @default.
- W4298325864 type Work @default.
- W4298325864 citedByCount "6" @default.
- W4298325864 countsByYear W42983258642022 @default.
- W4298325864 countsByYear W42983258642023 @default.
- W4298325864 crossrefType "journal-article" @default.
- W4298325864 hasAuthorship W4298325864A5004345367 @default.
- W4298325864 hasAuthorship W4298325864A5053144389 @default.
- W4298325864 hasAuthorship W4298325864A5073268640 @default.
- W4298325864 hasAuthorship W4298325864A5090724176 @default.
- W4298325864 hasConcept C104471815 @default.
- W4298325864 hasConcept C11413529 @default.
- W4298325864 hasConcept C115961682 @default.
- W4298325864 hasConcept C119857082 @default.
- W4298325864 hasConcept C12267149 @default.
- W4298325864 hasConcept C127313418 @default.
- W4298325864 hasConcept C154945302 @default.
- W4298325864 hasConcept C159390177 @default.
- W4298325864 hasConcept C159750122 @default.
- W4298325864 hasConcept C169258074 @default.