Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298395467> ?p ?o ?g. }
- W4298395467 endingPage "102641" @default.
- W4298395467 startingPage "102641" @default.
- W4298395467 abstract "Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information learned from a labeled source domain to facilitate the implementation in an unlabeled heterogeneous target domain. Although UDA is typically jointly trained on data from both domains, accessing the labeled source domain data is often restricted, due to concerns over patient data privacy or intellectual property. To sidestep this, we propose off-the-shelf (OS) UDA (OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain to a target domain, in the absence of source domain data in adaptation. Toward this goal, we aim to develop a novel batch-wise normalization (BN) statistics adaptation framework. In particular, we gradually adapt the domain-specific low-order BN statistics, e.g., mean and variance, through an exponential momentum decay strategy, while explicitly enforcing the consistency of the domain shareable high-order BN statistics, e.g., scaling and shifting factors, via our optimization objective. We also adaptively quantify the channel-wise transferability to gauge the importance of each channel, via both low-order statistics divergence and a scaling factor. Furthermore, we incorporate unsupervised self-entropy minimization into our framework to boost performance alongside a novel queued, memory-consistent self-training strategy to utilize the reliable pseudo label for stable and efficient unsupervised adaptation. We evaluated our OSUDA-based framework on both cross-modality and cross-subtype brain tumor segmentation and cardiac MR to CT segmentation tasks. Our experimental results showed that our memory consistent OSUDA performs better than existing source-relaxed UDA methods and yields similar performance to UDA methods with source data." @default.
- W4298395467 created "2022-10-02" @default.
- W4298395467 creator A5007259734 @default.
- W4298395467 creator A5013766979 @default.
- W4298395467 creator A5053436378 @default.
- W4298395467 creator A5075887055 @default.
- W4298395467 date "2023-01-01" @default.
- W4298395467 modified "2023-10-17" @default.
- W4298395467 title "Memory consistent unsupervised off-the-shelf model adaptation for source-relaxed medical image segmentation" @default.
- W4298395467 cites W1641498739 @default.
- W4298395467 cites W1903029394 @default.
- W4298395467 cites W2104094955 @default.
- W4298395467 cites W2106401878 @default.
- W4298395467 cites W2194775991 @default.
- W4298395467 cites W2291593693 @default.
- W4298395467 cites W2793888044 @default.
- W4298395467 cites W2884366600 @default.
- W4298395467 cites W2901389242 @default.
- W4298395467 cites W2905562891 @default.
- W4298395467 cites W2949813473 @default.
- W4298395467 cites W2962793481 @default.
- W4298395467 cites W2962851801 @default.
- W4298395467 cites W2963864946 @default.
- W4298395467 cites W2963870446 @default.
- W4298395467 cites W2965862774 @default.
- W4298395467 cites W2971013993 @default.
- W4298395467 cites W2980113592 @default.
- W4298395467 cites W2985406498 @default.
- W4298395467 cites W3014795415 @default.
- W4298395467 cites W3034218934 @default.
- W4298395467 cites W3034240269 @default.
- W4298395467 cites W3035831564 @default.
- W4298395467 cites W3039883906 @default.
- W4298395467 cites W3175042385 @default.
- W4298395467 cites W3183988645 @default.
- W4298395467 cites W3190537960 @default.
- W4298395467 cites W3201774370 @default.
- W4298395467 cites W3202959559 @default.
- W4298395467 cites W3203819300 @default.
- W4298395467 cites W3203972116 @default.
- W4298395467 cites W3205594649 @default.
- W4298395467 cites W3206487064 @default.
- W4298395467 cites W4220792900 @default.
- W4298395467 cites W4220807242 @default.
- W4298395467 cites W4230769173 @default.
- W4298395467 doi "https://doi.org/10.1016/j.media.2022.102641" @default.
- W4298395467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36265264" @default.
- W4298395467 hasPublicationYear "2023" @default.
- W4298395467 type Work @default.
- W4298395467 citedByCount "4" @default.
- W4298395467 countsByYear W42983954672023 @default.
- W4298395467 crossrefType "journal-article" @default.
- W4298395467 hasAuthorship W4298395467A5007259734 @default.
- W4298395467 hasAuthorship W4298395467A5013766979 @default.
- W4298395467 hasAuthorship W4298395467A5053436378 @default.
- W4298395467 hasAuthorship W4298395467A5075887055 @default.
- W4298395467 hasBestOaLocation W42983954672 @default.
- W4298395467 hasConcept C106301342 @default.
- W4298395467 hasConcept C111919701 @default.
- W4298395467 hasConcept C119857082 @default.
- W4298395467 hasConcept C121332964 @default.
- W4298395467 hasConcept C124101348 @default.
- W4298395467 hasConcept C153180895 @default.
- W4298395467 hasConcept C154945302 @default.
- W4298395467 hasConcept C41008148 @default.
- W4298395467 hasConcept C43126263 @default.
- W4298395467 hasConcept C48044578 @default.
- W4298395467 hasConcept C62520636 @default.
- W4298395467 hasConcept C77088390 @default.
- W4298395467 hasConcept C8038995 @default.
- W4298395467 hasConcept C89600930 @default.
- W4298395467 hasConceptScore W4298395467C106301342 @default.
- W4298395467 hasConceptScore W4298395467C111919701 @default.
- W4298395467 hasConceptScore W4298395467C119857082 @default.
- W4298395467 hasConceptScore W4298395467C121332964 @default.
- W4298395467 hasConceptScore W4298395467C124101348 @default.
- W4298395467 hasConceptScore W4298395467C153180895 @default.
- W4298395467 hasConceptScore W4298395467C154945302 @default.
- W4298395467 hasConceptScore W4298395467C41008148 @default.
- W4298395467 hasConceptScore W4298395467C43126263 @default.
- W4298395467 hasConceptScore W4298395467C48044578 @default.
- W4298395467 hasConceptScore W4298395467C62520636 @default.
- W4298395467 hasConceptScore W4298395467C77088390 @default.
- W4298395467 hasConceptScore W4298395467C8038995 @default.
- W4298395467 hasConceptScore W4298395467C89600930 @default.
- W4298395467 hasFunder F4320332161 @default.
- W4298395467 hasLocation W42983954671 @default.
- W4298395467 hasLocation W42983954672 @default.
- W4298395467 hasLocation W42983954673 @default.
- W4298395467 hasLocation W42983954674 @default.
- W4298395467 hasOpenAccess W4298395467 @default.
- W4298395467 hasPrimaryLocation W42983954671 @default.
- W4298395467 hasRelatedWork W3007915134 @default.
- W4298395467 hasRelatedWork W3046775127 @default.
- W4298395467 hasRelatedWork W3123344745 @default.
- W4298395467 hasRelatedWork W3196155444 @default.
- W4298395467 hasRelatedWork W3208099188 @default.
- W4298395467 hasRelatedWork W3209574120 @default.