Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298427547> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4298427547 abstract "Kronecker coefficients encode the tensor products of complex irreducible representations of symmetric groups. Their stability properties have been considered recently by several authors (Vallejo, Pak and Panova, Stembridge). We describe a geometric method, based on Schur-Weyl duality, that allows to produce huge series of instances of this phenomenon. Moreover the method gives access to lots of extra information. Most notably, we can often compute the stable Kronecker coefficients, sometimes as number of points in very explicit polytopes. We can also describe explicitely the moment polytope in the neighbourhood of our stable triples. Finally, we explain an observation of Stembridge on the behaviour of certain rectangular Kronecker coefficients, by relating it to the affine Dynkin diagram of type $E_6$." @default.
- W4298427547 created "2022-10-02" @default.
- W4298427547 creator A5017367646 @default.
- W4298427547 date "2014-11-13" @default.
- W4298427547 modified "2023-10-06" @default.
- W4298427547 title "On the asymptotics of Kronecker coefficients" @default.
- W4298427547 doi "https://doi.org/10.48550/arxiv.1411.3498" @default.
- W4298427547 hasPublicationYear "2014" @default.
- W4298427547 type Work @default.
- W4298427547 citedByCount "0" @default.
- W4298427547 crossrefType "posted-content" @default.
- W4298427547 hasAuthorship W4298427547A5017367646 @default.
- W4298427547 hasBestOaLocation W42984275471 @default.
- W4298427547 hasConcept C114411622 @default.
- W4298427547 hasConcept C114614502 @default.
- W4298427547 hasConcept C121332964 @default.
- W4298427547 hasConcept C145691206 @default.
- W4298427547 hasConcept C202444582 @default.
- W4298427547 hasConcept C33923547 @default.
- W4298427547 hasConcept C39482219 @default.
- W4298427547 hasConcept C51255310 @default.
- W4298427547 hasConcept C51568863 @default.
- W4298427547 hasConcept C62520636 @default.
- W4298427547 hasConcept C92757383 @default.
- W4298427547 hasConceptScore W4298427547C114411622 @default.
- W4298427547 hasConceptScore W4298427547C114614502 @default.
- W4298427547 hasConceptScore W4298427547C121332964 @default.
- W4298427547 hasConceptScore W4298427547C145691206 @default.
- W4298427547 hasConceptScore W4298427547C202444582 @default.
- W4298427547 hasConceptScore W4298427547C33923547 @default.
- W4298427547 hasConceptScore W4298427547C39482219 @default.
- W4298427547 hasConceptScore W4298427547C51255310 @default.
- W4298427547 hasConceptScore W4298427547C51568863 @default.
- W4298427547 hasConceptScore W4298427547C62520636 @default.
- W4298427547 hasConceptScore W4298427547C92757383 @default.
- W4298427547 hasLocation W42984275471 @default.
- W4298427547 hasLocation W42984275472 @default.
- W4298427547 hasLocation W42984275473 @default.
- W4298427547 hasLocation W42984275474 @default.
- W4298427547 hasLocation W42984275475 @default.
- W4298427547 hasLocation W42984275476 @default.
- W4298427547 hasLocation W42984275477 @default.
- W4298427547 hasLocation W42984275478 @default.
- W4298427547 hasLocation W42984275479 @default.
- W4298427547 hasOpenAccess W4298427547 @default.
- W4298427547 hasPrimaryLocation W42984275471 @default.
- W4298427547 hasRelatedWork W1493684871 @default.
- W4298427547 hasRelatedWork W1610250788 @default.
- W4298427547 hasRelatedWork W2018233472 @default.
- W4298427547 hasRelatedWork W2507185596 @default.
- W4298427547 hasRelatedWork W2963984885 @default.
- W4298427547 hasRelatedWork W3104888810 @default.
- W4298427547 hasRelatedWork W3153509215 @default.
- W4298427547 hasRelatedWork W4280529077 @default.
- W4298427547 hasRelatedWork W4289304899 @default.
- W4298427547 hasRelatedWork W4298427547 @default.
- W4298427547 isParatext "false" @default.
- W4298427547 isRetracted "false" @default.
- W4298427547 workType "article" @default.