Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298473437> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4298473437 abstract "Transient chaos is an ubiquitous phenomenon characterizing the dynamics of phase space trajectories evolving towards a steady state attractor in physical systems as diverse as fluids, chemical reactions and condensed matter systems. Here we show that transient chaos also appears in the dynamics of certain efficient algorithms searching for solutions of constraint satisfaction problems that include scheduling, circuit design, routing, database problems or even Sudoku. In particular, we present a study of the emergence of hardness in Boolean satisfiability ($k$-SAT), a canonical class of constraint satisfaction problems, by using an analog deterministic algorithm based on a system of ordinary differential equations. Problem hardness is defined through the escape rate $kappa$, an invariant measure of transient chaos of the dynamical system corresponding to the analog algorithm, and it expresses the rate at which the trajectory approaches a solution.We show that for a given density of constraints and fixed number of Boolean variables $N$, the hardness of formulas in random $k$-SAT ensembles has a wide variation, approximable by a lognormal distribution. We also show that when increasing the density of constraints $alpha$, hardness appears through a second-order phase transition at $alpha_{chi}$ in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic. A similar behavior is found in 4-SAT as well, however, such transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter $kappa sim N^{B|alpha - alpha_{chi}|^{1-gamma}}$ with $0< gamma < 1$. We demonstrate that the transition is generated by the appearance of metastable basins in the solution space as the density of constraints $alpha$ is increased." @default.
- W4298473437 created "2022-10-02" @default.
- W4298473437 creator A5038398506 @default.
- W4298473437 creator A5067564333 @default.
- W4298473437 creator A5091158372 @default.
- W4298473437 creator A5091671977 @default.
- W4298473437 date "2016-02-16" @default.
- W4298473437 modified "2023-09-26" @default.
- W4298473437 title "Order-to-chaos transition in the hardness of random Boolean satisfiability problems" @default.
- W4298473437 doi "https://doi.org/10.48550/arxiv.1602.05152" @default.
- W4298473437 hasPublicationYear "2016" @default.
- W4298473437 type Work @default.
- W4298473437 citedByCount "0" @default.
- W4298473437 crossrefType "posted-content" @default.
- W4298473437 hasAuthorship W4298473437A5038398506 @default.
- W4298473437 hasAuthorship W4298473437A5067564333 @default.
- W4298473437 hasAuthorship W4298473437A5091158372 @default.
- W4298473437 hasAuthorship W4298473437A5091671977 @default.
- W4298473437 hasBestOaLocation W42984734371 @default.
- W4298473437 hasConcept C105795698 @default.
- W4298473437 hasConcept C111797529 @default.
- W4298473437 hasConcept C118615104 @default.
- W4298473437 hasConcept C121332964 @default.
- W4298473437 hasConcept C121864883 @default.
- W4298473437 hasConcept C134306372 @default.
- W4298473437 hasConcept C154945302 @default.
- W4298473437 hasConcept C164380108 @default.
- W4298473437 hasConcept C168773769 @default.
- W4298473437 hasConcept C187455244 @default.
- W4298473437 hasConcept C199622910 @default.
- W4298473437 hasConcept C2777052490 @default.
- W4298473437 hasConcept C33923547 @default.
- W4298473437 hasConcept C41008148 @default.
- W4298473437 hasConcept C49937458 @default.
- W4298473437 hasConcept C62520636 @default.
- W4298473437 hasConcept C6943359 @default.
- W4298473437 hasConcept C7342684 @default.
- W4298473437 hasConcept C79379906 @default.
- W4298473437 hasConceptScore W4298473437C105795698 @default.
- W4298473437 hasConceptScore W4298473437C111797529 @default.
- W4298473437 hasConceptScore W4298473437C118615104 @default.
- W4298473437 hasConceptScore W4298473437C121332964 @default.
- W4298473437 hasConceptScore W4298473437C121864883 @default.
- W4298473437 hasConceptScore W4298473437C134306372 @default.
- W4298473437 hasConceptScore W4298473437C154945302 @default.
- W4298473437 hasConceptScore W4298473437C164380108 @default.
- W4298473437 hasConceptScore W4298473437C168773769 @default.
- W4298473437 hasConceptScore W4298473437C187455244 @default.
- W4298473437 hasConceptScore W4298473437C199622910 @default.
- W4298473437 hasConceptScore W4298473437C2777052490 @default.
- W4298473437 hasConceptScore W4298473437C33923547 @default.
- W4298473437 hasConceptScore W4298473437C41008148 @default.
- W4298473437 hasConceptScore W4298473437C49937458 @default.
- W4298473437 hasConceptScore W4298473437C62520636 @default.
- W4298473437 hasConceptScore W4298473437C6943359 @default.
- W4298473437 hasConceptScore W4298473437C7342684 @default.
- W4298473437 hasConceptScore W4298473437C79379906 @default.
- W4298473437 hasLocation W42984734371 @default.
- W4298473437 hasOpenAccess W4298473437 @default.
- W4298473437 hasPrimaryLocation W42984734371 @default.
- W4298473437 hasRelatedWork W127510381 @default.
- W4298473437 hasRelatedWork W1574885773 @default.
- W4298473437 hasRelatedWork W2104988143 @default.
- W4298473437 hasRelatedWork W2126331452 @default.
- W4298473437 hasRelatedWork W2147442986 @default.
- W4298473437 hasRelatedWork W2310041562 @default.
- W4298473437 hasRelatedWork W2747084554 @default.
- W4298473437 hasRelatedWork W2949259551 @default.
- W4298473437 hasRelatedWork W3012061787 @default.
- W4298473437 hasRelatedWork W3146669578 @default.
- W4298473437 isParatext "false" @default.
- W4298473437 isRetracted "false" @default.
- W4298473437 workType "article" @default.