Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298587794> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4298587794 abstract "We give an interpretation of the Brauer group of a purely inseparable extension of exponent 1, in terms of restricted Lie-Rinehart cohomology. In particular, we define and study the category $p$-$rm{LR}(A)$ of restricted Lie-Rinehart algebras over a commutative algebra $A$. We define cotriple cohomology groups $H_{p-LR}(L,M)$ for $Lin p$-$rm{LR}(A)$ and $M$ a Beck $L$-module. We classify restricted Lie-Rinehart extensions. Thus, we obtain a classification theorem for regular extensions considered by Hoshschild." @default.
- W4298587794 created "2022-10-02" @default.
- W4298587794 creator A5064938473 @default.
- W4298587794 date "2011-10-13" @default.
- W4298587794 modified "2023-10-01" @default.
- W4298587794 title "Cohomology of Restricted Lie-Rinehart Algebras and the Brauer Group" @default.
- W4298587794 doi "https://doi.org/10.48550/arxiv.1110.3007" @default.
- W4298587794 hasPublicationYear "2011" @default.
- W4298587794 type Work @default.
- W4298587794 citedByCount "0" @default.
- W4298587794 crossrefType "posted-content" @default.
- W4298587794 hasAuthorship W4298587794A5064938473 @default.
- W4298587794 hasBestOaLocation W42985877941 @default.
- W4298587794 hasConcept C121332964 @default.
- W4298587794 hasConcept C136119220 @default.
- W4298587794 hasConcept C155751095 @default.
- W4298587794 hasConcept C183778304 @default.
- W4298587794 hasConcept C187915474 @default.
- W4298587794 hasConcept C199360897 @default.
- W4298587794 hasConcept C202444582 @default.
- W4298587794 hasConcept C22365015 @default.
- W4298587794 hasConcept C2778029271 @default.
- W4298587794 hasConcept C2781311116 @default.
- W4298587794 hasConcept C33923547 @default.
- W4298587794 hasConcept C41008148 @default.
- W4298587794 hasConcept C51568863 @default.
- W4298587794 hasConcept C62196294 @default.
- W4298587794 hasConcept C62520636 @default.
- W4298587794 hasConcept C78606066 @default.
- W4298587794 hasConceptScore W4298587794C121332964 @default.
- W4298587794 hasConceptScore W4298587794C136119220 @default.
- W4298587794 hasConceptScore W4298587794C155751095 @default.
- W4298587794 hasConceptScore W4298587794C183778304 @default.
- W4298587794 hasConceptScore W4298587794C187915474 @default.
- W4298587794 hasConceptScore W4298587794C199360897 @default.
- W4298587794 hasConceptScore W4298587794C202444582 @default.
- W4298587794 hasConceptScore W4298587794C22365015 @default.
- W4298587794 hasConceptScore W4298587794C2778029271 @default.
- W4298587794 hasConceptScore W4298587794C2781311116 @default.
- W4298587794 hasConceptScore W4298587794C33923547 @default.
- W4298587794 hasConceptScore W4298587794C41008148 @default.
- W4298587794 hasConceptScore W4298587794C51568863 @default.
- W4298587794 hasConceptScore W4298587794C62196294 @default.
- W4298587794 hasConceptScore W4298587794C62520636 @default.
- W4298587794 hasConceptScore W4298587794C78606066 @default.
- W4298587794 hasLocation W42985877941 @default.
- W4298587794 hasLocation W42985877942 @default.
- W4298587794 hasOpenAccess W4298587794 @default.
- W4298587794 hasPrimaryLocation W42985877941 @default.
- W4298587794 hasRelatedWork W1969545359 @default.
- W4298587794 hasRelatedWork W1993200459 @default.
- W4298587794 hasRelatedWork W2013026918 @default.
- W4298587794 hasRelatedWork W2087734572 @default.
- W4298587794 hasRelatedWork W2090214799 @default.
- W4298587794 hasRelatedWork W2558968431 @default.
- W4298587794 hasRelatedWork W4200626941 @default.
- W4298587794 hasRelatedWork W4230292203 @default.
- W4298587794 hasRelatedWork W589986174 @default.
- W4298587794 hasRelatedWork W2788788620 @default.
- W4298587794 isParatext "false" @default.
- W4298587794 isRetracted "false" @default.
- W4298587794 workType "article" @default.