Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298614314> ?p ?o ?g. }
- W4298614314 abstract "Abstract Background Rapidly expanding clones (RECs) are one of the single-cell-derived mesenchymal stem cell clones sorted from human bone marrow mononuclear cells (BMMCs), which possess advantageous features. The RECs exhibit long-lasting proliferation potency that allows more than 10 repeated serial passages in vitro, considerably benefiting the manufacturing process of allogenic MSC-based therapeutic products. Although RECs aid the preparation of large-variation clone libraries for a greedy selection of better-quality clones, such a selection is only possible by establishing multiple-candidate cell banks for quality comparisons. Thus, there is a high demand for a novel method that can predict “low-risk and high-potency clones” early and in a feasible manner given the excessive cost and effort required to maintain such an establishment. Methods LNGFR and Thy-1 co-positive cells from BMMCs were single-cell-sorted into 96-well plates, and only fast-growing clones that reached confluency in 2 weeks were picked up and passaged as RECs. Fifteen RECs were prepared as passage 3 (P3) cryostock as the primary cell bank. From this cryostock, RECs were passaged until their proliferation limitation; their serial-passage limitation numbers were labeled as serial-passage potencies. At the P1 stage, phase-contrast microscopic images were obtained over 6–90 h to identify time-course changes of 24 morphological descriptors describing cell population information. Machine learning models were constructed using the morphological descriptors for predicting serial-passage potencies. The time window and field-of-view-number effects were evaluated to identify the most efficient image data usage condition for realizing high-performance serial-passage potency models. Results Serial-passage test results indicated variations of 7–13-repeated serial-passage potencies within RECs. Such potency values were predicted quantitatively with high performance (RMSE < 1.0) from P1 morphological profiles using a LASSO model. The earliest and minimum effort predictions require 6–30 h with 40 FOVs and 6–90 h with 15 FOVs, respectively. Conclusion We successfully developed a noninvasive morphology-based machine learning model to enhance the efficiency of establishing cell banks with single-cell-derived RECs for quantitatively predicting the future serial-passage potencies of clones. Conventional methods that can make noninvasive and quantitative predictions without wasting precious cells in the early stage are lacking; the proposed method will provide a more efficient and robust cell bank establishment process for allogenic therapeutic product manufacturing." @default.
- W4298614314 created "2022-10-02" @default.
- W4298614314 creator A5009300603 @default.
- W4298614314 creator A5013095646 @default.
- W4298614314 creator A5014820628 @default.
- W4298614314 creator A5016436861 @default.
- W4298614314 creator A5016482792 @default.
- W4298614314 creator A5067796689 @default.
- W4298614314 date "2022-10-02" @default.
- W4298614314 modified "2023-10-18" @default.
- W4298614314 title "Morphology-based noninvasive early prediction of serial-passage potency enhances the selection of clone-derived high-potency cell bank from mesenchymal stem cells" @default.
- W4298614314 cites W1232693927 @default.
- W4298614314 cites W1787632481 @default.
- W4298614314 cites W1844685923 @default.
- W4298614314 cites W1968092989 @default.
- W4298614314 cites W1983460320 @default.
- W4298614314 cites W1990762448 @default.
- W4298614314 cites W2019136342 @default.
- W4298614314 cites W2049446122 @default.
- W4298614314 cites W2053911973 @default.
- W4298614314 cites W2058421846 @default.
- W4298614314 cites W2060332540 @default.
- W4298614314 cites W2063070261 @default.
- W4298614314 cites W2068467751 @default.
- W4298614314 cites W2077814461 @default.
- W4298614314 cites W2079433142 @default.
- W4298614314 cites W2080416062 @default.
- W4298614314 cites W2097209955 @default.
- W4298614314 cites W2112254862 @default.
- W4298614314 cites W2156509094 @default.
- W4298614314 cites W2169401202 @default.
- W4298614314 cites W2221267861 @default.
- W4298614314 cites W2427154682 @default.
- W4298614314 cites W2494515430 @default.
- W4298614314 cites W2539058645 @default.
- W4298614314 cites W2625970669 @default.
- W4298614314 cites W2765979567 @default.
- W4298614314 cites W2766654377 @default.
- W4298614314 cites W2771830523 @default.
- W4298614314 cites W2795774212 @default.
- W4298614314 cites W2799494827 @default.
- W4298614314 cites W2801539596 @default.
- W4298614314 cites W2805637759 @default.
- W4298614314 cites W2805892376 @default.
- W4298614314 cites W2809170199 @default.
- W4298614314 cites W2880292807 @default.
- W4298614314 cites W2964816857 @default.
- W4298614314 cites W2992079273 @default.
- W4298614314 cites W3056742884 @default.
- W4298614314 cites W3089093329 @default.
- W4298614314 cites W3097459371 @default.
- W4298614314 cites W3122895718 @default.
- W4298614314 doi "https://doi.org/10.1186/s41232-022-00214-w" @default.
- W4298614314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36182958" @default.
- W4298614314 hasPublicationYear "2022" @default.
- W4298614314 type Work @default.
- W4298614314 citedByCount "1" @default.
- W4298614314 countsByYear W42986143142023 @default.
- W4298614314 crossrefType "journal-article" @default.
- W4298614314 hasAuthorship W4298614314A5009300603 @default.
- W4298614314 hasAuthorship W4298614314A5013095646 @default.
- W4298614314 hasAuthorship W4298614314A5014820628 @default.
- W4298614314 hasAuthorship W4298614314A5016436861 @default.
- W4298614314 hasAuthorship W4298614314A5016482792 @default.
- W4298614314 hasAuthorship W4298614314A5067796689 @default.
- W4298614314 hasBestOaLocation W42986143141 @default.
- W4298614314 hasConcept C104317684 @default.
- W4298614314 hasConcept C132351222 @default.
- W4298614314 hasConcept C1491633281 @default.
- W4298614314 hasConcept C198826908 @default.
- W4298614314 hasConcept C202751555 @default.
- W4298614314 hasConcept C28328180 @default.
- W4298614314 hasConcept C2908647359 @default.
- W4298614314 hasConcept C54355233 @default.
- W4298614314 hasConcept C57992300 @default.
- W4298614314 hasConcept C62112901 @default.
- W4298614314 hasConcept C70721500 @default.
- W4298614314 hasConcept C71924100 @default.
- W4298614314 hasConcept C81089528 @default.
- W4298614314 hasConcept C81885089 @default.
- W4298614314 hasConcept C86803240 @default.
- W4298614314 hasConcept C95444343 @default.
- W4298614314 hasConcept C99454951 @default.
- W4298614314 hasConceptScore W4298614314C104317684 @default.
- W4298614314 hasConceptScore W4298614314C132351222 @default.
- W4298614314 hasConceptScore W4298614314C1491633281 @default.
- W4298614314 hasConceptScore W4298614314C198826908 @default.
- W4298614314 hasConceptScore W4298614314C202751555 @default.
- W4298614314 hasConceptScore W4298614314C28328180 @default.
- W4298614314 hasConceptScore W4298614314C2908647359 @default.
- W4298614314 hasConceptScore W4298614314C54355233 @default.
- W4298614314 hasConceptScore W4298614314C57992300 @default.
- W4298614314 hasConceptScore W4298614314C62112901 @default.
- W4298614314 hasConceptScore W4298614314C70721500 @default.
- W4298614314 hasConceptScore W4298614314C71924100 @default.
- W4298614314 hasConceptScore W4298614314C81089528 @default.
- W4298614314 hasConceptScore W4298614314C81885089 @default.
- W4298614314 hasConceptScore W4298614314C86803240 @default.
- W4298614314 hasConceptScore W4298614314C95444343 @default.
- W4298614314 hasConceptScore W4298614314C99454951 @default.