Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298618773> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4298618773 endingPage "346" @default.
- W4298618773 startingPage "327" @default.
- W4298618773 abstract "AbstractAnt Colony Optimization (ACO) is one of the powerful swarm intelligence algorithms capable of solving various problems. In this research, ACO is used to optimize individuals with graph structure. This structure is exactly like the approach taken by genetic network programming (GNP) for individual representation for solving agent control problems. However, in some types of environments such as stochastic environments, calculated fitness of an individual is not the same in each evaluation. Therefore, to estimate the true fitness of an individual, several times of evaluation are needed leading to increased process time of the evolution. In this research, a method is proposed to avoid slowing down the progress speed of the algorithm using ACO. This method can be well adapted on graph structures and in each iteration, it enhances the fitness of individuals using a constructive mechanism. In constructive mechanism, an individual is produced according to the experience of previous generations. In this research, the experience is the achieved fitness and it is distributed on the corresponding paths in the graph structure. This new method was used to solve an agent control problem called Pursuit-Domain while the environment is deterministic or stochastic. The experimental results showed high capabilities of this algorithm in generation of efficient strategies for agents in an agent control problem.KeywordsAnt colony optimizationAgent control problemsStochastic environmentsGenetic programmingGenetic network programming" @default.
- W4298618773 created "2022-10-02" @default.
- W4298618773 creator A5022936429 @default.
- W4298618773 creator A5049654471 @default.
- W4298618773 creator A5069849555 @default.
- W4298618773 creator A5076824950 @default.
- W4298618773 date "2022-10-02" @default.
- W4298618773 modified "2023-09-25" @default.
- W4298618773 title "Graph Structure Optimization for Agent Control Problems Using ACO" @default.
- W4298618773 cites W1512383952 @default.
- W4298618773 cites W1599449370 @default.
- W4298618773 cites W1963895581 @default.
- W4298618773 cites W1973534016 @default.
- W4298618773 cites W1985941908 @default.
- W4298618773 cites W2006504846 @default.
- W4298618773 cites W2016190558 @default.
- W4298618773 cites W2078968195 @default.
- W4298618773 cites W2086600750 @default.
- W4298618773 cites W2103632534 @default.
- W4298618773 cites W2105084957 @default.
- W4298618773 cites W2121314733 @default.
- W4298618773 cites W2144317842 @default.
- W4298618773 cites W2148836909 @default.
- W4298618773 cites W2155534891 @default.
- W4298618773 cites W2155728488 @default.
- W4298618773 cites W2159407711 @default.
- W4298618773 cites W2194709217 @default.
- W4298618773 cites W2512138543 @default.
- W4298618773 cites W2797026760 @default.
- W4298618773 cites W2886415299 @default.
- W4298618773 cites W2912123109 @default.
- W4298618773 cites W2950213400 @default.
- W4298618773 cites W2966361623 @default.
- W4298618773 cites W2977510592 @default.
- W4298618773 cites W3002636196 @default.
- W4298618773 cites W3006673808 @default.
- W4298618773 cites W3138871366 @default.
- W4298618773 cites W3151769383 @default.
- W4298618773 cites W4252684946 @default.
- W4298618773 doi "https://doi.org/10.1007/978-3-031-09835-2_18" @default.
- W4298618773 hasPublicationYear "2022" @default.
- W4298618773 type Work @default.
- W4298618773 citedByCount "0" @default.
- W4298618773 crossrefType "book-chapter" @default.
- W4298618773 hasAuthorship W4298618773A5022936429 @default.
- W4298618773 hasAuthorship W4298618773A5049654471 @default.
- W4298618773 hasAuthorship W4298618773A5069849555 @default.
- W4298618773 hasAuthorship W4298618773A5076824950 @default.
- W4298618773 hasConcept C110332635 @default.
- W4298618773 hasConcept C111919701 @default.
- W4298618773 hasConcept C126255220 @default.
- W4298618773 hasConcept C132525143 @default.
- W4298618773 hasConcept C134306372 @default.
- W4298618773 hasConcept C154945302 @default.
- W4298618773 hasConcept C2778701210 @default.
- W4298618773 hasConcept C33923547 @default.
- W4298618773 hasConcept C36503486 @default.
- W4298618773 hasConcept C41008148 @default.
- W4298618773 hasConcept C80444323 @default.
- W4298618773 hasConcept C98045186 @default.
- W4298618773 hasConceptScore W4298618773C110332635 @default.
- W4298618773 hasConceptScore W4298618773C111919701 @default.
- W4298618773 hasConceptScore W4298618773C126255220 @default.
- W4298618773 hasConceptScore W4298618773C132525143 @default.
- W4298618773 hasConceptScore W4298618773C134306372 @default.
- W4298618773 hasConceptScore W4298618773C154945302 @default.
- W4298618773 hasConceptScore W4298618773C2778701210 @default.
- W4298618773 hasConceptScore W4298618773C33923547 @default.
- W4298618773 hasConceptScore W4298618773C36503486 @default.
- W4298618773 hasConceptScore W4298618773C41008148 @default.
- W4298618773 hasConceptScore W4298618773C80444323 @default.
- W4298618773 hasConceptScore W4298618773C98045186 @default.
- W4298618773 hasLocation W42986187731 @default.
- W4298618773 hasOpenAccess W4298618773 @default.
- W4298618773 hasPrimaryLocation W42986187731 @default.
- W4298618773 hasRelatedWork W1498900709 @default.
- W4298618773 hasRelatedWork W1864954421 @default.
- W4298618773 hasRelatedWork W2161596865 @default.
- W4298618773 hasRelatedWork W2623347760 @default.
- W4298618773 hasRelatedWork W2800549968 @default.
- W4298618773 hasRelatedWork W3034138874 @default.
- W4298618773 hasRelatedWork W3107474891 @default.
- W4298618773 hasRelatedWork W344510009 @default.
- W4298618773 hasRelatedWork W638368624 @default.
- W4298618773 hasRelatedWork W3086365268 @default.
- W4298618773 isParatext "false" @default.
- W4298618773 isRetracted "false" @default.
- W4298618773 workType "book-chapter" @default.