Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298623218> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4298623218 endingPage "100175" @default.
- W4298623218 startingPage "100175" @default.
- W4298623218 abstract "A growing number of articles have been reported to investigate health consequences of micro- and nanoplastics (MNPs) exposure, but no coherent images have been achieved due to the incomparability between studies, the complexity and heterogeneity of the existing toxicity data of MNPs. Herein, this work developed a predictive modelling framework for the cytotoxicity of MNPs using classification-based machine learning approaches. A literature search led to 1824 sample points represented by 9 features describing physicochemical properties of MNPs, the cell-related attribute and experimental factors. The decision tree ensemble classifier built from all features (DTE1) showed strong predictive ability with an accuracy of 0.95, recall and precision of both 0.86. Feature selection was subsequently performed to identify the key ingredients that dominated the toxic properties of MNPs. A simplified classifier developed from 6 influencing features demonstrated a comparable model performance to DTE1. This result can help direct future studies toward better experimental design and report, facilitating the understanding of the pressing MNP-related health issues. With continuous integration of more representative research data, the developed model can be widely applicable to a spectrum of MNP cytotoxicity settings." @default.
- W4298623218 created "2022-10-02" @default.
- W4298623218 creator A5008288324 @default.
- W4298623218 creator A5022608886 @default.
- W4298623218 creator A5036627793 @default.
- W4298623218 date "2022-11-01" @default.
- W4298623218 modified "2023-09-27" @default.
- W4298623218 title "Combining machine learning with meta-analysis for predicting cytotoxicity of micro- and nanoplastics" @default.
- W4298623218 cites W14024944 @default.
- W4298623218 cites W2010883638 @default.
- W4298623218 cites W2062556296 @default.
- W4298623218 cites W2795814275 @default.
- W4298623218 cites W2922408224 @default.
- W4298623218 cites W2972186294 @default.
- W4298623218 cites W2999178113 @default.
- W4298623218 cites W3037240660 @default.
- W4298623218 cites W3107853162 @default.
- W4298623218 cites W3109363169 @default.
- W4298623218 cites W3126538505 @default.
- W4298623218 cites W3205222302 @default.
- W4298623218 cites W4200605805 @default.
- W4298623218 cites W4205409169 @default.
- W4298623218 cites W4205769173 @default.
- W4298623218 cites W4220655782 @default.
- W4298623218 cites W4220760495 @default.
- W4298623218 cites W4220900610 @default.
- W4298623218 cites W4225275700 @default.
- W4298623218 cites W4234423575 @default.
- W4298623218 cites W4281479331 @default.
- W4298623218 doi "https://doi.org/10.1016/j.hazadv.2022.100175" @default.
- W4298623218 hasPublicationYear "2022" @default.
- W4298623218 type Work @default.
- W4298623218 citedByCount "3" @default.
- W4298623218 countsByYear W42986232182023 @default.
- W4298623218 crossrefType "journal-article" @default.
- W4298623218 hasAuthorship W4298623218A5008288324 @default.
- W4298623218 hasAuthorship W4298623218A5022608886 @default.
- W4298623218 hasAuthorship W4298623218A5036627793 @default.
- W4298623218 hasBestOaLocation W42986232181 @default.
- W4298623218 hasConcept C119857082 @default.
- W4298623218 hasConcept C124101348 @default.
- W4298623218 hasConcept C148483581 @default.
- W4298623218 hasConcept C154945302 @default.
- W4298623218 hasConcept C41008148 @default.
- W4298623218 hasConcept C51632099 @default.
- W4298623218 hasConcept C84525736 @default.
- W4298623218 hasConcept C95623464 @default.
- W4298623218 hasConceptScore W4298623218C119857082 @default.
- W4298623218 hasConceptScore W4298623218C124101348 @default.
- W4298623218 hasConceptScore W4298623218C148483581 @default.
- W4298623218 hasConceptScore W4298623218C154945302 @default.
- W4298623218 hasConceptScore W4298623218C41008148 @default.
- W4298623218 hasConceptScore W4298623218C51632099 @default.
- W4298623218 hasConceptScore W4298623218C84525736 @default.
- W4298623218 hasConceptScore W4298623218C95623464 @default.
- W4298623218 hasFunder F4320320847 @default.
- W4298623218 hasFunder F4320321056 @default.
- W4298623218 hasLocation W42986232181 @default.
- W4298623218 hasOpenAccess W4298623218 @default.
- W4298623218 hasPrimaryLocation W42986232181 @default.
- W4298623218 hasRelatedWork W1470425429 @default.
- W4298623218 hasRelatedWork W3185179407 @default.
- W4298623218 hasRelatedWork W3200179079 @default.
- W4298623218 hasRelatedWork W3210877509 @default.
- W4298623218 hasRelatedWork W4205478082 @default.
- W4298623218 hasRelatedWork W4281385048 @default.
- W4298623218 hasRelatedWork W4293525103 @default.
- W4298623218 hasRelatedWork W4318350883 @default.
- W4298623218 hasRelatedWork W4328134586 @default.
- W4298623218 hasRelatedWork W4361795583 @default.
- W4298623218 hasVolume "8" @default.
- W4298623218 isParatext "false" @default.
- W4298623218 isRetracted "false" @default.
- W4298623218 workType "article" @default.