Matches in SemOpenAlex for { <https://semopenalex.org/work/W4298631102> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4298631102 abstract "Let D be a masa in B(H) where H is a separable Hilbert space. We find real numbers eta_0 < eta_1 < eta_2 < ... < eta_6 so that for every bounded, normal D-bimodule map {Phi} on B(H) either ||Phi|| > eta_6, or ||Phi|| = eta_k for some k <= 6. When D is totally atomic, these maps are the idempotent Schur multipliers and we characterise those with norm eta_k for 0 <= k <= 6. We also show that the Schur idempotents which keep only the diagonal and superdiagonal of an n x n matrix, or of an n x (n+1) matrix, both have norm 2/(n+1) cot(pi/(n+1)), and we consider the average norm of a random idempotent Schur multiplier as a function of dimension. Many of our arguments are framed in the combinatorial language of bipartite graphs." @default.
- W4298631102 created "2022-10-02" @default.
- W4298631102 creator A5034064754 @default.
- W4298631102 date "2013-02-20" @default.
- W4298631102 modified "2023-10-17" @default.
- W4298631102 title "Norms of idempotent Schur multipliers" @default.
- W4298631102 doi "https://doi.org/10.48550/arxiv.1302.4849" @default.
- W4298631102 hasPublicationYear "2013" @default.
- W4298631102 type Work @default.
- W4298631102 citedByCount "0" @default.
- W4298631102 crossrefType "posted-content" @default.
- W4298631102 hasAuthorship W4298631102A5034064754 @default.
- W4298631102 hasBestOaLocation W42986311021 @default.
- W4298631102 hasConcept C114614502 @default.
- W4298631102 hasConcept C118615104 @default.
- W4298631102 hasConcept C130367717 @default.
- W4298631102 hasConcept C134306372 @default.
- W4298631102 hasConcept C172252984 @default.
- W4298631102 hasConcept C17744445 @default.
- W4298631102 hasConcept C191795146 @default.
- W4298631102 hasConcept C199539241 @default.
- W4298631102 hasConcept C2524010 @default.
- W4298631102 hasConcept C33375987 @default.
- W4298631102 hasConcept C33923547 @default.
- W4298631102 hasConcept C34388435 @default.
- W4298631102 hasConcept C70710897 @default.
- W4298631102 hasConceptScore W4298631102C114614502 @default.
- W4298631102 hasConceptScore W4298631102C118615104 @default.
- W4298631102 hasConceptScore W4298631102C130367717 @default.
- W4298631102 hasConceptScore W4298631102C134306372 @default.
- W4298631102 hasConceptScore W4298631102C172252984 @default.
- W4298631102 hasConceptScore W4298631102C17744445 @default.
- W4298631102 hasConceptScore W4298631102C191795146 @default.
- W4298631102 hasConceptScore W4298631102C199539241 @default.
- W4298631102 hasConceptScore W4298631102C2524010 @default.
- W4298631102 hasConceptScore W4298631102C33375987 @default.
- W4298631102 hasConceptScore W4298631102C33923547 @default.
- W4298631102 hasConceptScore W4298631102C34388435 @default.
- W4298631102 hasConceptScore W4298631102C70710897 @default.
- W4298631102 hasLocation W42986311021 @default.
- W4298631102 hasLocation W42986311022 @default.
- W4298631102 hasOpenAccess W4298631102 @default.
- W4298631102 hasPrimaryLocation W42986311021 @default.
- W4298631102 hasRelatedWork W2030463542 @default.
- W4298631102 hasRelatedWork W2166142625 @default.
- W4298631102 hasRelatedWork W2277591072 @default.
- W4298631102 hasRelatedWork W2329421842 @default.
- W4298631102 hasRelatedWork W2963456256 @default.
- W4298631102 hasRelatedWork W2975746194 @default.
- W4298631102 hasRelatedWork W3098379097 @default.
- W4298631102 hasRelatedWork W3217728716 @default.
- W4298631102 hasRelatedWork W4205475165 @default.
- W4298631102 hasRelatedWork W2589879608 @default.
- W4298631102 isParatext "false" @default.
- W4298631102 isRetracted "false" @default.
- W4298631102 workType "article" @default.