Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299298052> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4299298052 abstract "The formula is $partial{e}=({rm ad}_e)b+sum_{i=0}^infty{frac{B_i}{i!}}({rm ad}_e)^i(b-a)>,$ with $partial{a}+{1over2}[a,a] =0$ and $partial{b}+{1over2}[b,b] =0$, where $a$, $b$ and $e$ in degrees $-1$, $-1$ and 0 are the free generators of a completed free graded Lie algebra $L[a,b,e]$. The coefficients are defined by ${xover{e^x-1}}=sum_{n=0}^infty{B_nover{}n!}x^n$. The theorem is that (I) this formula for $partial$ on generators extends to a derivation of square zero on $L[a,b,e]$, (II) the formula for $partial{e}$ is unique satisfying the first property, once given the formulae for $partial{a}$ and $partial{b}$, along with the condition that the flow generated by $e$ moves $a$ to $b$ in unit time. The immediate significance of this formula is that it computes the infinity cocommutative coalgebra structure on the chains of the closed interval. It may be derived and proved using the geometrical idea of flat connections and one parameter groups or flows of gauge transformations. The deeper significance of such general DGLAs which want to combine deformation theory and rational homotopy theory is proposed as a research problem." @default.
- W4299298052 created "2022-10-02" @default.
- W4299298052 creator A5036659529 @default.
- W4299298052 creator A5040159347 @default.
- W4299298052 date "2006-10-30" @default.
- W4299298052 modified "2023-09-28" @default.
- W4299298052 title "A formula for topology/deformations and its significance" @default.
- W4299298052 doi "https://doi.org/10.48550/arxiv.math/0610949" @default.
- W4299298052 hasPublicationYear "2006" @default.
- W4299298052 type Work @default.
- W4299298052 citedByCount "0" @default.
- W4299298052 crossrefType "posted-content" @default.
- W4299298052 hasAuthorship W4299298052A5036659529 @default.
- W4299298052 hasAuthorship W4299298052A5040159347 @default.
- W4299298052 hasBestOaLocation W42992980521 @default.
- W4299298052 hasConcept C114614502 @default.
- W4299298052 hasConcept C122637931 @default.
- W4299298052 hasConcept C134306372 @default.
- W4299298052 hasConcept C138885662 @default.
- W4299298052 hasConcept C145420912 @default.
- W4299298052 hasConcept C202444582 @default.
- W4299298052 hasConcept C2780813799 @default.
- W4299298052 hasConcept C33923547 @default.
- W4299298052 hasConcept C41895202 @default.
- W4299298052 hasConcept C5961521 @default.
- W4299298052 hasConcept C7321624 @default.
- W4299298052 hasConceptScore W4299298052C114614502 @default.
- W4299298052 hasConceptScore W4299298052C122637931 @default.
- W4299298052 hasConceptScore W4299298052C134306372 @default.
- W4299298052 hasConceptScore W4299298052C138885662 @default.
- W4299298052 hasConceptScore W4299298052C145420912 @default.
- W4299298052 hasConceptScore W4299298052C202444582 @default.
- W4299298052 hasConceptScore W4299298052C2780813799 @default.
- W4299298052 hasConceptScore W4299298052C33923547 @default.
- W4299298052 hasConceptScore W4299298052C41895202 @default.
- W4299298052 hasConceptScore W4299298052C5961521 @default.
- W4299298052 hasConceptScore W4299298052C7321624 @default.
- W4299298052 hasLocation W42992980521 @default.
- W4299298052 hasLocation W42992980522 @default.
- W4299298052 hasOpenAccess W4299298052 @default.
- W4299298052 hasPrimaryLocation W42992980521 @default.
- W4299298052 hasRelatedWork W1928221629 @default.
- W4299298052 hasRelatedWork W1978042415 @default.
- W4299298052 hasRelatedWork W2080519218 @default.
- W4299298052 hasRelatedWork W2395975225 @default.
- W4299298052 hasRelatedWork W2949548814 @default.
- W4299298052 hasRelatedWork W2950089757 @default.
- W4299298052 hasRelatedWork W3120496089 @default.
- W4299298052 hasRelatedWork W3192345888 @default.
- W4299298052 hasRelatedWork W4301014467 @default.
- W4299298052 hasRelatedWork W4384918685 @default.
- W4299298052 isParatext "false" @default.
- W4299298052 isRetracted "false" @default.
- W4299298052 workType "article" @default.