Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299366955> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4299366955 abstract "In this article, we consider the following capacitated covering problem. We are given a set $P$ of $n$ points and a set $mathcal{B}$ of balls from some metric space, and a positive integer $U$ that represents the capacity of each of the balls in $mathcal{B}$. We would like to compute a subset $mathcal{B}' subseteq mathcal{B}$ of balls and assign each point in $P$ to some ball in $mathcal{B}$ that contains it, such that the number of points assigned to any ball is at most $U$. The objective function that we would like to minimize is the cardinality of $mathcal{B}$. We consider this problem in arbitrary metric spaces as well as Euclidean spaces of constant dimension. In the metric setting, even the uncapacitated version of the problem is hard to approximate to within a logarithmic factor. In the Euclidean setting, the best known approximation guarantee in dimensions $3$ and higher is logarithmic in the number of points. Thus we focus on obtaining bi-criteria approximations. In particular, we are allowed to expand the balls in our solution by some factor, but optimal solutions do not have that flexibility. Our main result is that allowing constant factor expansion of the input balls suffices to obtain constant approximations for these problems. In fact, in the Euclidean setting, only $(1+epsilon)$ factor expansion is sufficient for any $epsilon > 0$, with the approximation factor being a polynomial in $1/epsilon$. We obtain these results using a unified scheme for rounding the natural LP relaxation; this scheme may be useful for other capacitated covering problems. We also complement these bi-criteria approximations by obtaining hardness of approximation results that shed light on our understanding of these problems." @default.
- W4299366955 created "2022-10-02" @default.
- W4299366955 creator A5001388244 @default.
- W4299366955 creator A5040475534 @default.
- W4299366955 creator A5065331075 @default.
- W4299366955 creator A5086697145 @default.
- W4299366955 date "2017-07-17" @default.
- W4299366955 modified "2023-09-30" @default.
- W4299366955 title "Capacitated Covering Problems in Geometric Spaces" @default.
- W4299366955 doi "https://doi.org/10.48550/arxiv.1707.05170" @default.
- W4299366955 hasPublicationYear "2017" @default.
- W4299366955 type Work @default.
- W4299366955 citedByCount "0" @default.
- W4299366955 crossrefType "posted-content" @default.
- W4299366955 hasAuthorship W4299366955A5001388244 @default.
- W4299366955 hasAuthorship W4299366955A5040475534 @default.
- W4299366955 hasAuthorship W4299366955A5065331075 @default.
- W4299366955 hasAuthorship W4299366955A5086697145 @default.
- W4299366955 hasBestOaLocation W42993669551 @default.
- W4299366955 hasConcept C111919701 @default.
- W4299366955 hasConcept C114614502 @default.
- W4299366955 hasConcept C118615104 @default.
- W4299366955 hasConcept C122041747 @default.
- W4299366955 hasConcept C124101348 @default.
- W4299366955 hasConcept C129782007 @default.
- W4299366955 hasConcept C134306372 @default.
- W4299366955 hasConcept C136625980 @default.
- W4299366955 hasConcept C153658351 @default.
- W4299366955 hasConcept C164660894 @default.
- W4299366955 hasConcept C186450821 @default.
- W4299366955 hasConcept C198043062 @default.
- W4299366955 hasConcept C199360897 @default.
- W4299366955 hasConcept C2524010 @default.
- W4299366955 hasConcept C2777027219 @default.
- W4299366955 hasConcept C33676613 @default.
- W4299366955 hasConcept C33923547 @default.
- W4299366955 hasConcept C39927690 @default.
- W4299366955 hasConcept C41008148 @default.
- W4299366955 hasConcept C87117476 @default.
- W4299366955 hasConcept C97137487 @default.
- W4299366955 hasConceptScore W4299366955C111919701 @default.
- W4299366955 hasConceptScore W4299366955C114614502 @default.
- W4299366955 hasConceptScore W4299366955C118615104 @default.
- W4299366955 hasConceptScore W4299366955C122041747 @default.
- W4299366955 hasConceptScore W4299366955C124101348 @default.
- W4299366955 hasConceptScore W4299366955C129782007 @default.
- W4299366955 hasConceptScore W4299366955C134306372 @default.
- W4299366955 hasConceptScore W4299366955C136625980 @default.
- W4299366955 hasConceptScore W4299366955C153658351 @default.
- W4299366955 hasConceptScore W4299366955C164660894 @default.
- W4299366955 hasConceptScore W4299366955C186450821 @default.
- W4299366955 hasConceptScore W4299366955C198043062 @default.
- W4299366955 hasConceptScore W4299366955C199360897 @default.
- W4299366955 hasConceptScore W4299366955C2524010 @default.
- W4299366955 hasConceptScore W4299366955C2777027219 @default.
- W4299366955 hasConceptScore W4299366955C33676613 @default.
- W4299366955 hasConceptScore W4299366955C33923547 @default.
- W4299366955 hasConceptScore W4299366955C39927690 @default.
- W4299366955 hasConceptScore W4299366955C41008148 @default.
- W4299366955 hasConceptScore W4299366955C87117476 @default.
- W4299366955 hasConceptScore W4299366955C97137487 @default.
- W4299366955 hasLocation W42993669551 @default.
- W4299366955 hasLocation W42993669552 @default.
- W4299366955 hasOpenAccess W4299366955 @default.
- W4299366955 hasPrimaryLocation W42993669551 @default.
- W4299366955 hasRelatedWork W1719789614 @default.
- W4299366955 hasRelatedWork W2024680387 @default.
- W4299366955 hasRelatedWork W2053578961 @default.
- W4299366955 hasRelatedWork W2080188430 @default.
- W4299366955 hasRelatedWork W2151692582 @default.
- W4299366955 hasRelatedWork W2963697215 @default.
- W4299366955 hasRelatedWork W3026892677 @default.
- W4299366955 hasRelatedWork W3104846303 @default.
- W4299366955 hasRelatedWork W4241033831 @default.
- W4299366955 hasRelatedWork W4318937695 @default.
- W4299366955 isParatext "false" @default.
- W4299366955 isRetracted "false" @default.
- W4299366955 workType "article" @default.