Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299488192> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4299488192 abstract "Malignant lesions in breast tissue specimen whole slide images (WSIs), may lead to a dangerous diagnosis, such as cancer. However, WSIs analysis is time-consuming and expensive, requiring the work of expert pathologists. This paper aims to present a method for the 2022 BRIGHT Challenge, that involves the analysis of breast WSIs. The organizers provided over 550 breast WSIs and over 3900 regions of interest (ROIs) to develop and validate methods for breast cancer images. The method presented in this work is based on a Multiple Instance Learning instance-based Convolutional Neural Network (CNN), allowing the combination of strongly-annotated data (from ROIs) and weakly-annotated data (from WSIs) via the optimization of a multi-task loss function. Furthermore, during the CNN training, the input patches are clustered and filtered according to their entropy, to reduce the non-informative content used to train the model. The CNN reaches an averaged <tex>$text{F1-score}=0.63pm 0.02$</tex> on the 3-class classification task and averaged <tex>$text{F1-score}=0.39 pm 0.08$</tex> on the 6-class classification task, considering the val-idation partition; an averaged <tex>$text{F1-score}=0.65$</tex> on the cancer risk classification task and averaged <tex>$text{F1-score}=0.45$</tex> on the sub-typing cancer risk classification task, considering the best result achieved on the test partition. These results show that Multiple Instance Learning instance-based CNNs may represent a good resource to tackle this kind of problem." @default.
- W4299488192 created "2022-10-02" @default.
- W4299488192 creator A5015739274 @default.
- W4299488192 creator A5051421852 @default.
- W4299488192 creator A5061961859 @default.
- W4299488192 creator A5075411914 @default.
- W4299488192 date "2022-03-28" @default.
- W4299488192 modified "2023-09-30" @default.
- W4299488192 title "A Multi-Task Multiple Instance Learning Algorithm to Analyze Large Whole Slide Images from Bright Challenge 2022" @default.
- W4299488192 cites W1980570292 @default.
- W4299488192 cites W2105272680 @default.
- W4299488192 cites W2148309496 @default.
- W4299488192 cites W2894084084 @default.
- W4299488192 cites W2956228567 @default.
- W4299488192 cites W3035524453 @default.
- W4299488192 cites W3135547872 @default.
- W4299488192 cites W3188992855 @default.
- W4299488192 cites W3206263253 @default.
- W4299488192 doi "https://doi.org/10.1109/isbic56247.2022.9854527" @default.
- W4299488192 hasPublicationYear "2022" @default.
- W4299488192 type Work @default.
- W4299488192 citedByCount "0" @default.
- W4299488192 crossrefType "proceedings-article" @default.
- W4299488192 hasAuthorship W4299488192A5015739274 @default.
- W4299488192 hasAuthorship W4299488192A5051421852 @default.
- W4299488192 hasAuthorship W4299488192A5061961859 @default.
- W4299488192 hasAuthorship W4299488192A5075411914 @default.
- W4299488192 hasBestOaLocation W42994881922 @default.
- W4299488192 hasConcept C108583219 @default.
- W4299488192 hasConcept C114614502 @default.
- W4299488192 hasConcept C119857082 @default.
- W4299488192 hasConcept C121608353 @default.
- W4299488192 hasConcept C126322002 @default.
- W4299488192 hasConcept C153180895 @default.
- W4299488192 hasConcept C154945302 @default.
- W4299488192 hasConcept C162324750 @default.
- W4299488192 hasConcept C187736073 @default.
- W4299488192 hasConcept C2780451532 @default.
- W4299488192 hasConcept C33923547 @default.
- W4299488192 hasConcept C41008148 @default.
- W4299488192 hasConcept C42812 @default.
- W4299488192 hasConcept C530470458 @default.
- W4299488192 hasConcept C71924100 @default.
- W4299488192 hasConcept C81363708 @default.
- W4299488192 hasConceptScore W4299488192C108583219 @default.
- W4299488192 hasConceptScore W4299488192C114614502 @default.
- W4299488192 hasConceptScore W4299488192C119857082 @default.
- W4299488192 hasConceptScore W4299488192C121608353 @default.
- W4299488192 hasConceptScore W4299488192C126322002 @default.
- W4299488192 hasConceptScore W4299488192C153180895 @default.
- W4299488192 hasConceptScore W4299488192C154945302 @default.
- W4299488192 hasConceptScore W4299488192C162324750 @default.
- W4299488192 hasConceptScore W4299488192C187736073 @default.
- W4299488192 hasConceptScore W4299488192C2780451532 @default.
- W4299488192 hasConceptScore W4299488192C33923547 @default.
- W4299488192 hasConceptScore W4299488192C41008148 @default.
- W4299488192 hasConceptScore W4299488192C42812 @default.
- W4299488192 hasConceptScore W4299488192C530470458 @default.
- W4299488192 hasConceptScore W4299488192C71924100 @default.
- W4299488192 hasConceptScore W4299488192C81363708 @default.
- W4299488192 hasLocation W42994881921 @default.
- W4299488192 hasLocation W42994881922 @default.
- W4299488192 hasOpenAccess W4299488192 @default.
- W4299488192 hasPrimaryLocation W42994881921 @default.
- W4299488192 hasRelatedWork W2337926734 @default.
- W4299488192 hasRelatedWork W2732542196 @default.
- W4299488192 hasRelatedWork W2738221750 @default.
- W4299488192 hasRelatedWork W3156786002 @default.
- W4299488192 hasRelatedWork W4311257506 @default.
- W4299488192 hasRelatedWork W4312417841 @default.
- W4299488192 hasRelatedWork W4320802194 @default.
- W4299488192 hasRelatedWork W4321369474 @default.
- W4299488192 hasRelatedWork W4366224123 @default.
- W4299488192 hasRelatedWork W564581980 @default.
- W4299488192 isParatext "false" @default.
- W4299488192 isRetracted "false" @default.
- W4299488192 workType "article" @default.