Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299524963> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4299524963 abstract "We consider a Bayesian method for learning the Bayesian network structure from complete data. Recently, Koivisto and Sood (2004) presented an algorithm that for any single edge computes its marginal posterior probability in O(n 2^n) time, where n is the number of attributes; the number of parents per attribute is bounded by a constant. In this paper we show that the posterior probabilities for all the n (n - 1) potential edges can be computed in O(n 2^n) total time. This result is achieved by a forward-backward technique and fast Moebius transform algorithms, which are of independent interest. The resulting speedup by a factor of about n^2 allows us to experimentally study the statistical power of learning moderate-size networks. We report results from a simulation study that covers data sets with 20 to 10,000 records over 5 to 25 discrete attributes" @default.
- W4299524963 created "2022-10-02" @default.
- W4299524963 creator A5001681464 @default.
- W4299524963 date "2012-06-27" @default.
- W4299524963 modified "2023-10-18" @default.
- W4299524963 title "Advances in exact Bayesian structure discovery in Bayesian networks" @default.
- W4299524963 doi "https://doi.org/10.48550/arxiv.1206.6828" @default.
- W4299524963 hasPublicationYear "2012" @default.
- W4299524963 type Work @default.
- W4299524963 citedByCount "0" @default.
- W4299524963 crossrefType "posted-content" @default.
- W4299524963 hasAuthorship W4299524963A5001681464 @default.
- W4299524963 hasBestOaLocation W42995249631 @default.
- W4299524963 hasConcept C107673813 @default.
- W4299524963 hasConcept C111919701 @default.
- W4299524963 hasConcept C11413529 @default.
- W4299524963 hasConcept C134306372 @default.
- W4299524963 hasConcept C154945302 @default.
- W4299524963 hasConcept C160234255 @default.
- W4299524963 hasConcept C199360897 @default.
- W4299524963 hasConcept C2777027219 @default.
- W4299524963 hasConcept C33724603 @default.
- W4299524963 hasConcept C33923547 @default.
- W4299524963 hasConcept C34388435 @default.
- W4299524963 hasConcept C41008148 @default.
- W4299524963 hasConcept C57830394 @default.
- W4299524963 hasConcept C68339613 @default.
- W4299524963 hasConceptScore W4299524963C107673813 @default.
- W4299524963 hasConceptScore W4299524963C111919701 @default.
- W4299524963 hasConceptScore W4299524963C11413529 @default.
- W4299524963 hasConceptScore W4299524963C134306372 @default.
- W4299524963 hasConceptScore W4299524963C154945302 @default.
- W4299524963 hasConceptScore W4299524963C160234255 @default.
- W4299524963 hasConceptScore W4299524963C199360897 @default.
- W4299524963 hasConceptScore W4299524963C2777027219 @default.
- W4299524963 hasConceptScore W4299524963C33724603 @default.
- W4299524963 hasConceptScore W4299524963C33923547 @default.
- W4299524963 hasConceptScore W4299524963C34388435 @default.
- W4299524963 hasConceptScore W4299524963C41008148 @default.
- W4299524963 hasConceptScore W4299524963C57830394 @default.
- W4299524963 hasConceptScore W4299524963C68339613 @default.
- W4299524963 hasLocation W42995249631 @default.
- W4299524963 hasOpenAccess W4299524963 @default.
- W4299524963 hasPrimaryLocation W42995249631 @default.
- W4299524963 hasRelatedWork W118730952 @default.
- W4299524963 hasRelatedWork W1529069387 @default.
- W4299524963 hasRelatedWork W201949389 @default.
- W4299524963 hasRelatedWork W2032094637 @default.
- W4299524963 hasRelatedWork W2352852554 @default.
- W4299524963 hasRelatedWork W2361581950 @default.
- W4299524963 hasRelatedWork W2383590079 @default.
- W4299524963 hasRelatedWork W2617021092 @default.
- W4299524963 hasRelatedWork W2985502519 @default.
- W4299524963 hasRelatedWork W3210139743 @default.
- W4299524963 isParatext "false" @default.
- W4299524963 isRetracted "false" @default.
- W4299524963 workType "article" @default.