Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299561447> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4299561447 abstract "This paper presents a first end-to-end application of a Quantum Support Vector Machine (QSVM) algorithm for a classification problem in the financial payment industry using the IBM Safer Payments and IBM Quantum Computers via the Qiskit software stack. Based on real card payment data, a thorough comparison is performed to assess the complementary impact brought in by the current state-of-the-art Quantum Machine Learning algorithms with respect to the Classical Approach. A new method to search for best features is explored using the Quantum Support Vector Machine's feature map characteristics. The results are compared using fraud specific key performance indicators: Accuracy, Recall, and False Positive Rate, extracted from analyses based on human expertise (rule decisions), classical machine learning algorithms (Random Forest, XGBoost) and quantum based machine learning algorithms using QSVM. In addition, a hybrid classical-quantum approach is explored by using an ensemble model that combines classical and quantum algorithms to better improve the fraud prevention decision. We found, as expected, that the results highly depend on feature selections and algorithms that are used to select them. The QSVM provides a complementary exploration of the feature space which led to an improved accuracy of the mixed quantum-classical method for fraud detection, on a drastically reduced data set to fit current state of Quantum Hardware." @default.
- W4299561447 created "2022-10-02" @default.
- W4299561447 creator A5002058302 @default.
- W4299561447 creator A5003723768 @default.
- W4299561447 creator A5010105352 @default.
- W4299561447 creator A5017741513 @default.
- W4299561447 creator A5037404628 @default.
- W4299561447 creator A5069309118 @default.
- W4299561447 creator A5087695609 @default.
- W4299561447 date "2022-08-16" @default.
- W4299561447 modified "2023-10-16" @default.
- W4299561447 title "Mixed Quantum-Classical Method For Fraud Detection with Quantum Feature Selection" @default.
- W4299561447 doi "https://doi.org/10.48550/arxiv.2208.07963" @default.
- W4299561447 hasPublicationYear "2022" @default.
- W4299561447 type Work @default.
- W4299561447 citedByCount "1" @default.
- W4299561447 countsByYear W42995614472023 @default.
- W4299561447 crossrefType "posted-content" @default.
- W4299561447 hasAuthorship W4299561447A5002058302 @default.
- W4299561447 hasAuthorship W4299561447A5003723768 @default.
- W4299561447 hasAuthorship W4299561447A5010105352 @default.
- W4299561447 hasAuthorship W4299561447A5017741513 @default.
- W4299561447 hasAuthorship W4299561447A5037404628 @default.
- W4299561447 hasAuthorship W4299561447A5069309118 @default.
- W4299561447 hasAuthorship W4299561447A5087695609 @default.
- W4299561447 hasBestOaLocation W42995614471 @default.
- W4299561447 hasConcept C11413529 @default.
- W4299561447 hasConcept C119857082 @default.
- W4299561447 hasConcept C121332964 @default.
- W4299561447 hasConcept C12267149 @default.
- W4299561447 hasConcept C124101348 @default.
- W4299561447 hasConcept C137019171 @default.
- W4299561447 hasConcept C138885662 @default.
- W4299561447 hasConcept C148483581 @default.
- W4299561447 hasConcept C154945302 @default.
- W4299561447 hasConcept C15706264 @default.
- W4299561447 hasConcept C169258074 @default.
- W4299561447 hasConcept C171250308 @default.
- W4299561447 hasConcept C192562407 @default.
- W4299561447 hasConcept C2776401178 @default.
- W4299561447 hasConcept C2779094486 @default.
- W4299561447 hasConcept C41008148 @default.
- W4299561447 hasConcept C41895202 @default.
- W4299561447 hasConcept C58053490 @default.
- W4299561447 hasConcept C62520636 @default.
- W4299561447 hasConcept C70388272 @default.
- W4299561447 hasConcept C83665646 @default.
- W4299561447 hasConcept C84114770 @default.
- W4299561447 hasConceptScore W4299561447C11413529 @default.
- W4299561447 hasConceptScore W4299561447C119857082 @default.
- W4299561447 hasConceptScore W4299561447C121332964 @default.
- W4299561447 hasConceptScore W4299561447C12267149 @default.
- W4299561447 hasConceptScore W4299561447C124101348 @default.
- W4299561447 hasConceptScore W4299561447C137019171 @default.
- W4299561447 hasConceptScore W4299561447C138885662 @default.
- W4299561447 hasConceptScore W4299561447C148483581 @default.
- W4299561447 hasConceptScore W4299561447C154945302 @default.
- W4299561447 hasConceptScore W4299561447C15706264 @default.
- W4299561447 hasConceptScore W4299561447C169258074 @default.
- W4299561447 hasConceptScore W4299561447C171250308 @default.
- W4299561447 hasConceptScore W4299561447C192562407 @default.
- W4299561447 hasConceptScore W4299561447C2776401178 @default.
- W4299561447 hasConceptScore W4299561447C2779094486 @default.
- W4299561447 hasConceptScore W4299561447C41008148 @default.
- W4299561447 hasConceptScore W4299561447C41895202 @default.
- W4299561447 hasConceptScore W4299561447C58053490 @default.
- W4299561447 hasConceptScore W4299561447C62520636 @default.
- W4299561447 hasConceptScore W4299561447C70388272 @default.
- W4299561447 hasConceptScore W4299561447C83665646 @default.
- W4299561447 hasConceptScore W4299561447C84114770 @default.
- W4299561447 hasLocation W42995614471 @default.
- W4299561447 hasOpenAccess W4299561447 @default.
- W4299561447 hasPrimaryLocation W42995614471 @default.
- W4299561447 hasRelatedWork W2798434869 @default.
- W4299561447 hasRelatedWork W2982045970 @default.
- W4299561447 hasRelatedWork W3109680281 @default.
- W4299561447 hasRelatedWork W3136876814 @default.
- W4299561447 hasRelatedWork W3137372613 @default.
- W4299561447 hasRelatedWork W3141755656 @default.
- W4299561447 hasRelatedWork W3197287714 @default.
- W4299561447 hasRelatedWork W3206424815 @default.
- W4299561447 hasRelatedWork W4221139343 @default.
- W4299561447 hasRelatedWork W4223544695 @default.
- W4299561447 isParatext "false" @default.
- W4299561447 isRetracted "false" @default.
- W4299561447 workType "article" @default.