Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299590803> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4299590803 abstract "Let $C$ be a smooth plane curve. A point $P$ in the projective plane is said to be Galois with respect to $C$ if the function field extension induced from the point projection from $P$ is Galois. We denote by $delta(C)$ (resp. $delta'(C)$) the number of Galois points contained in $C$ (resp. in $mathbb P^2 setminus C$). In this article, we determine the numbers $delta(C)$ and $delta'(C)$ in any remaining open cases. Summarizing results obtained by now, we will have a complete classification theorem of smooth plane curves by the number $delta(C)$ or $delta'(C)$. In particular, we give new characterizations of Fermat curve and Klein quartic curve by the number $delta'(C)$." @default.
- W4299590803 created "2022-10-02" @default.
- W4299590803 creator A5087772830 @default.
- W4299590803 date "2010-11-16" @default.
- W4299590803 modified "2023-10-18" @default.
- W4299590803 title "Complete determination of the number of Galois points for a smooth plane curve" @default.
- W4299590803 doi "https://doi.org/10.48550/arxiv.1011.3648" @default.
- W4299590803 hasPublicationYear "2010" @default.
- W4299590803 type Work @default.
- W4299590803 citedByCount "0" @default.
- W4299590803 crossrefType "posted-content" @default.
- W4299590803 hasAuthorship W4299590803A5087772830 @default.
- W4299590803 hasBestOaLocation W42995908031 @default.
- W4299590803 hasConcept C114614502 @default.
- W4299590803 hasConcept C130432447 @default.
- W4299590803 hasConcept C14036430 @default.
- W4299590803 hasConcept C17825722 @default.
- W4299590803 hasConcept C202444582 @default.
- W4299590803 hasConcept C2524010 @default.
- W4299590803 hasConcept C33923547 @default.
- W4299590803 hasConcept C43809302 @default.
- W4299590803 hasConcept C78458016 @default.
- W4299590803 hasConcept C84181032 @default.
- W4299590803 hasConcept C86803240 @default.
- W4299590803 hasConceptScore W4299590803C114614502 @default.
- W4299590803 hasConceptScore W4299590803C130432447 @default.
- W4299590803 hasConceptScore W4299590803C14036430 @default.
- W4299590803 hasConceptScore W4299590803C17825722 @default.
- W4299590803 hasConceptScore W4299590803C202444582 @default.
- W4299590803 hasConceptScore W4299590803C2524010 @default.
- W4299590803 hasConceptScore W4299590803C33923547 @default.
- W4299590803 hasConceptScore W4299590803C43809302 @default.
- W4299590803 hasConceptScore W4299590803C78458016 @default.
- W4299590803 hasConceptScore W4299590803C84181032 @default.
- W4299590803 hasConceptScore W4299590803C86803240 @default.
- W4299590803 hasLocation W42995908031 @default.
- W4299590803 hasLocation W42995908032 @default.
- W4299590803 hasLocation W42995908033 @default.
- W4299590803 hasOpenAccess W4299590803 @default.
- W4299590803 hasPrimaryLocation W42995908031 @default.
- W4299590803 hasRelatedWork W1530277186 @default.
- W4299590803 hasRelatedWork W1893041278 @default.
- W4299590803 hasRelatedWork W1967317769 @default.
- W4299590803 hasRelatedWork W2044652397 @default.
- W4299590803 hasRelatedWork W2099571829 @default.
- W4299590803 hasRelatedWork W2139270140 @default.
- W4299590803 hasRelatedWork W2323551983 @default.
- W4299590803 hasRelatedWork W2324830980 @default.
- W4299590803 hasRelatedWork W4298245680 @default.
- W4299590803 hasRelatedWork W794795277 @default.
- W4299590803 isParatext "false" @default.
- W4299590803 isRetracted "false" @default.
- W4299590803 workType "article" @default.