Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299670613> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4299670613 endingPage "3175" @default.
- W4299670613 startingPage "3147" @default.
- W4299670613 abstract "Recent research has shown promising results for estimating structural area, volume, and population from Sentinel 1 and 2 data at a 10 by 10-m spatial resolution. These studies were, however, conducted in homogeneous countries in Northern Europe. This study presents a deep learning methodology for population estimation in areas geographically distinct from Northern Europe. The two case study areas are Ghana and Egypt's Mediterranean coast, with supplementary ground truth data collected from Uganda, Kenya, Tanzania, Palestine, and Israel. This study aims to answer the question: How can we use Deep Learning to map structural area and type to derive population estimates for Ghana and Egypt based on Sentinel data? At 10 by 10-m resolution, the accuracy of the presented area predictions is similar to the Google Open Buildings dataset. An intercomparison of the presented population predictions is made with global state-of-the-art spatial population estimates, and the results are promising, with the proposed methodology showing comparable or better results than the state-of-the-art for the study areas." @default.
- W4299670613 created "2022-10-02" @default.
- W4299670613 creator A5041108219 @default.
- W4299670613 creator A5043279301 @default.
- W4299670613 creator A5056716532 @default.
- W4299670613 creator A5057027850 @default.
- W4299670613 date "2022-06-29" @default.
- W4299670613 modified "2023-09-24" @default.
- W4299670613 title "A deep learning method for creating globally applicable population estimates from sentinel data" @default.
- W4299670613 cites W103799516 @default.
- W4299670613 cites W2024870143 @default.
- W4299670613 cites W2055992762 @default.
- W4299670613 cites W2057442840 @default.
- W4299670613 cites W2151515721 @default.
- W4299670613 cites W2334722929 @default.
- W4299670613 cites W2736484122 @default.
- W4299670613 cites W2780517933 @default.
- W4299670613 cites W2915731581 @default.
- W4299670613 cites W2964350391 @default.
- W4299670613 cites W3013087019 @default.
- W4299670613 cites W3035160371 @default.
- W4299670613 cites W3093136453 @default.
- W4299670613 cites W3108189576 @default.
- W4299670613 cites W3130276205 @default.
- W4299670613 cites W3138012991 @default.
- W4299670613 cites W3148007798 @default.
- W4299670613 cites W3159500724 @default.
- W4299670613 cites W3186869931 @default.
- W4299670613 cites W3217609647 @default.
- W4299670613 doi "https://doi.org/10.1111/tgis.12971" @default.
- W4299670613 hasPublicationYear "2022" @default.
- W4299670613 type Work @default.
- W4299670613 citedByCount "1" @default.
- W4299670613 countsByYear W42996706132022 @default.
- W4299670613 crossrefType "journal-article" @default.
- W4299670613 hasAuthorship W4299670613A5041108219 @default.
- W4299670613 hasAuthorship W4299670613A5043279301 @default.
- W4299670613 hasAuthorship W4299670613A5056716532 @default.
- W4299670613 hasAuthorship W4299670613A5057027850 @default.
- W4299670613 hasBestOaLocation W42996706132 @default.
- W4299670613 hasConcept C144024400 @default.
- W4299670613 hasConcept C149923435 @default.
- W4299670613 hasConcept C154945302 @default.
- W4299670613 hasConcept C205649164 @default.
- W4299670613 hasConcept C2522767166 @default.
- W4299670613 hasConcept C2908647359 @default.
- W4299670613 hasConcept C41008148 @default.
- W4299670613 hasConceptScore W4299670613C144024400 @default.
- W4299670613 hasConceptScore W4299670613C149923435 @default.
- W4299670613 hasConceptScore W4299670613C154945302 @default.
- W4299670613 hasConceptScore W4299670613C205649164 @default.
- W4299670613 hasConceptScore W4299670613C2522767166 @default.
- W4299670613 hasConceptScore W4299670613C2908647359 @default.
- W4299670613 hasConceptScore W4299670613C41008148 @default.
- W4299670613 hasFunder F4320313796 @default.
- W4299670613 hasIssue "8" @default.
- W4299670613 hasLocation W42996706131 @default.
- W4299670613 hasLocation W42996706132 @default.
- W4299670613 hasOpenAccess W4299670613 @default.
- W4299670613 hasPrimaryLocation W42996706131 @default.
- W4299670613 hasRelatedWork W1488457491 @default.
- W4299670613 hasRelatedWork W1996408511 @default.
- W4299670613 hasRelatedWork W2324018445 @default.
- W4299670613 hasRelatedWork W2577361510 @default.
- W4299670613 hasRelatedWork W2748952813 @default.
- W4299670613 hasRelatedWork W2899084033 @default.
- W4299670613 hasRelatedWork W3061863718 @default.
- W4299670613 hasRelatedWork W3141868290 @default.
- W4299670613 hasRelatedWork W3199071977 @default.
- W4299670613 hasRelatedWork W2292471726 @default.
- W4299670613 hasVolume "26" @default.
- W4299670613 isParatext "false" @default.
- W4299670613 isRetracted "false" @default.
- W4299670613 workType "article" @default.