Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299675359> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4299675359 abstract "The Helly number of a family of sets with empty intersection is the size of its largest inclusion-wise minimal sub-family with empty intersection. Let F be a finite family of open subsets of an arbitrary locally arc-wise connected topological space Gamma. Assume that for every sub-family G of F the intersection of the elements of G has at most r connected components, each of which is a Q-homology cell. We show that the Helly number of F is at most r(d_Gamma+1), where d_Gamma is the smallest integer j such that every open set of Gamma has trivial Q-homology in dimension j and higher. (In particular d_{R^d} = d). This bound is best possible. We prove, in fact, a stronger theorem where small sub-families may have more than r connected components, each possibly with nontrivial homology in low dimension. As an application, we obtain several explicit bounds on Helly numbers in geometric transversal theory for which only ad hoc geometric proofs were previously known; in certain cases, the bound we obtain is better than what was previously known." @default.
- W4299675359 created "2022-10-02" @default.
- W4299675359 creator A5021289985 @default.
- W4299675359 creator A5059014964 @default.
- W4299675359 creator A5085694048 @default.
- W4299675359 date "2011-01-31" @default.
- W4299675359 modified "2023-10-18" @default.
- W4299675359 title "Helly numbers of acyclic families" @default.
- W4299675359 doi "https://doi.org/10.48550/arxiv.1101.6006" @default.
- W4299675359 hasPublicationYear "2011" @default.
- W4299675359 type Work @default.
- W4299675359 citedByCount "0" @default.
- W4299675359 crossrefType "posted-content" @default.
- W4299675359 hasAuthorship W4299675359A5021289985 @default.
- W4299675359 hasAuthorship W4299675359A5059014964 @default.
- W4299675359 hasAuthorship W4299675359A5085694048 @default.
- W4299675359 hasBestOaLocation W42996753591 @default.
- W4299675359 hasConcept C104317684 @default.
- W4299675359 hasConcept C114614502 @default.
- W4299675359 hasConcept C118615104 @default.
- W4299675359 hasConcept C127413603 @default.
- W4299675359 hasConcept C132525143 @default.
- W4299675359 hasConcept C134306372 @default.
- W4299675359 hasConcept C146978453 @default.
- W4299675359 hasConcept C165525559 @default.
- W4299675359 hasConcept C185592680 @default.
- W4299675359 hasConcept C199360897 @default.
- W4299675359 hasConcept C203776342 @default.
- W4299675359 hasConcept C33676613 @default.
- W4299675359 hasConcept C33923547 @default.
- W4299675359 hasConcept C41008148 @default.
- W4299675359 hasConcept C54540088 @default.
- W4299675359 hasConcept C55493867 @default.
- W4299675359 hasConcept C64543145 @default.
- W4299675359 hasConcept C77553402 @default.
- W4299675359 hasConcept C97137487 @default.
- W4299675359 hasConceptScore W4299675359C104317684 @default.
- W4299675359 hasConceptScore W4299675359C114614502 @default.
- W4299675359 hasConceptScore W4299675359C118615104 @default.
- W4299675359 hasConceptScore W4299675359C127413603 @default.
- W4299675359 hasConceptScore W4299675359C132525143 @default.
- W4299675359 hasConceptScore W4299675359C134306372 @default.
- W4299675359 hasConceptScore W4299675359C146978453 @default.
- W4299675359 hasConceptScore W4299675359C165525559 @default.
- W4299675359 hasConceptScore W4299675359C185592680 @default.
- W4299675359 hasConceptScore W4299675359C199360897 @default.
- W4299675359 hasConceptScore W4299675359C203776342 @default.
- W4299675359 hasConceptScore W4299675359C33676613 @default.
- W4299675359 hasConceptScore W4299675359C33923547 @default.
- W4299675359 hasConceptScore W4299675359C41008148 @default.
- W4299675359 hasConceptScore W4299675359C54540088 @default.
- W4299675359 hasConceptScore W4299675359C55493867 @default.
- W4299675359 hasConceptScore W4299675359C64543145 @default.
- W4299675359 hasConceptScore W4299675359C77553402 @default.
- W4299675359 hasConceptScore W4299675359C97137487 @default.
- W4299675359 hasLocation W42996753591 @default.
- W4299675359 hasLocation W42996753592 @default.
- W4299675359 hasLocation W42996753593 @default.
- W4299675359 hasLocation W42996753594 @default.
- W4299675359 hasLocation W42996753595 @default.
- W4299675359 hasOpenAccess W4299675359 @default.
- W4299675359 hasPrimaryLocation W42996753591 @default.
- W4299675359 hasRelatedWork W2002527724 @default.
- W4299675359 hasRelatedWork W2160761829 @default.
- W4299675359 hasRelatedWork W2393028428 @default.
- W4299675359 hasRelatedWork W2951645240 @default.
- W4299675359 hasRelatedWork W2952121824 @default.
- W4299675359 hasRelatedWork W2973235923 @default.
- W4299675359 hasRelatedWork W4241033831 @default.
- W4299675359 hasRelatedWork W4299622024 @default.
- W4299675359 hasRelatedWork W4301819041 @default.
- W4299675359 hasRelatedWork W1842855190 @default.
- W4299675359 isParatext "false" @default.
- W4299675359 isRetracted "false" @default.
- W4299675359 workType "article" @default.