Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299802242> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W4299802242 abstract "Let M be a singular irreducible complex manifold of dimension n. There are Q divisors D[-1], D[0], D[1],...,D[n+1] on Nash's manifold U -> M such that D[n+1] is relatively ample on bounded sets, D[n] is relatively eventually basepoint free on bounded sets, and D[-1] is canonical with the same relative plurigenera as a resolution of M. The divisor D=D[n] is the supremum of divisors (1/i)D_i. An arc g containing one singular point of M lifts to U if and only if the generating number of oplus_i O_g(D_i) is finite. When it is finite it equals 1+(K_U-K) .g where O_U(K) is the pullback mod torsion of Lambda^n Omega_M. If C is a complete curve in U then (-1/(n+1))K_U .C=D_1 .C + D_n+2 .C + D_(n+2)^2 .C +..... When there are infinitely many nonzero terms the sum should be taken formally or p-adically for a prime divisor p of n+2. There are finitely many nonzero terms if and only if C. D=0. The natural holomorphic map U -> M factorizes through the contracting map U -> Y_0. If M is bounded, the Grauert-Riemenschneider sheaf of M is Hom(O_M(D_{(n+2)^i - 1}), O_M(D_{(n+2)^i})) for large i. If M is projective, singular foliations on M such that K+(n+1)H is a finitely-generated divisor of Iitaka dimension one are completely resolvable, where K is the canonical divisor of the foliation and H is a hyperplane. There are some precise open questions in the article. According to a question of [7] it is not known whether Y_0 has canonical singularities." @default.
- W4299802242 created "2022-10-03" @default.
- W4299802242 creator A5020220128 @default.
- W4299802242 date "2010-04-13" @default.
- W4299802242 modified "2023-09-26" @default.
- W4299802242 title "Functorial affinization of Nash's manifold" @default.
- W4299802242 doi "https://doi.org/10.48550/arxiv.1004.2234" @default.
- W4299802242 hasPublicationYear "2010" @default.
- W4299802242 type Work @default.
- W4299802242 citedByCount "0" @default.
- W4299802242 crossrefType "posted-content" @default.
- W4299802242 hasAuthorship W4299802242A5020220128 @default.
- W4299802242 hasBestOaLocation W42998022421 @default.
- W4299802242 hasConcept C114614502 @default.
- W4299802242 hasConcept C134306372 @default.
- W4299802242 hasConcept C202444582 @default.
- W4299802242 hasConcept C203492994 @default.
- W4299802242 hasConcept C204575570 @default.
- W4299802242 hasConcept C33923547 @default.
- W4299802242 hasConcept C34388435 @default.
- W4299802242 hasConcept C4017995 @default.
- W4299802242 hasConceptScore W4299802242C114614502 @default.
- W4299802242 hasConceptScore W4299802242C134306372 @default.
- W4299802242 hasConceptScore W4299802242C202444582 @default.
- W4299802242 hasConceptScore W4299802242C203492994 @default.
- W4299802242 hasConceptScore W4299802242C204575570 @default.
- W4299802242 hasConceptScore W4299802242C33923547 @default.
- W4299802242 hasConceptScore W4299802242C34388435 @default.
- W4299802242 hasConceptScore W4299802242C4017995 @default.
- W4299802242 hasLocation W42998022421 @default.
- W4299802242 hasOpenAccess W4299802242 @default.
- W4299802242 hasPrimaryLocation W42998022421 @default.
- W4299802242 hasRelatedWork W1496148837 @default.
- W4299802242 hasRelatedWork W1986292095 @default.
- W4299802242 hasRelatedWork W2030272032 @default.
- W4299802242 hasRelatedWork W2047074448 @default.
- W4299802242 hasRelatedWork W2079944066 @default.
- W4299802242 hasRelatedWork W2087841575 @default.
- W4299802242 hasRelatedWork W2098356337 @default.
- W4299802242 hasRelatedWork W2964148013 @default.
- W4299802242 hasRelatedWork W4309335603 @default.
- W4299802242 hasRelatedWork W4376274968 @default.
- W4299802242 isParatext "false" @default.
- W4299802242 isRetracted "false" @default.
- W4299802242 workType "article" @default.