Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299870824> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4299870824 endingPage "12" @default.
- W4299870824 startingPage "1" @default.
- W4299870824 abstract "The highly dimensional characteristic of time series brings many challenges on direct mining time series, such as high cost in time and space. Granular computing provides a potential strategy for representing and dealing with time series at a higher level of abstraction. In this study, we propose an information granulation-based weighted fuzzy C-means (wFCM) method to realize time-series clustering, which could avoid high dimensionality processing and provide a concise and visible granular prototype for each cluster. In this method, each time series is first transformed into a series of information granules with trend following the principle of justifiable granularity. The formed granular time series can well capture the main features lying in the original time series and help realize dimensionality reduction. Then, the wFCM method is developed to complete time-series clustering in the granular space. Here, the dynamic time warping (DTW) is extended to capture the similarity for trend-based granular time series. Furthermore, the weighted DTW barycenter averaging is introduced to derive prototypes presented in a granular format, capturing the level, the fluctuation, and the changing trend, which are meaningful and understandable clustering results. The experiments conducted on real-world datasets coming from the UCR time-series database and Chinese stocks are presented to illustrate the effectiveness and practicality of the designed time-series clustering model." @default.
- W4299870824 created "2022-10-03" @default.
- W4299870824 creator A5003799782 @default.
- W4299870824 creator A5035168940 @default.
- W4299870824 creator A5066223731 @default.
- W4299870824 creator A5079522255 @default.
- W4299870824 creator A5087372437 @default.
- W4299870824 date "2022-01-01" @default.
- W4299870824 modified "2023-10-14" @default.
- W4299870824 title "Weighted Fuzzy Clustering for Time Series With Trend-Based Information Granulation" @default.
- W4299870824 doi "https://doi.org/10.1109/tcyb.2022.3190705" @default.
- W4299870824 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35943996" @default.
- W4299870824 hasPublicationYear "2022" @default.
- W4299870824 type Work @default.
- W4299870824 citedByCount "1" @default.
- W4299870824 countsByYear W42998708242023 @default.
- W4299870824 crossrefType "journal-article" @default.
- W4299870824 hasAuthorship W4299870824A5003799782 @default.
- W4299870824 hasAuthorship W4299870824A5035168940 @default.
- W4299870824 hasAuthorship W4299870824A5066223731 @default.
- W4299870824 hasAuthorship W4299870824A5079522255 @default.
- W4299870824 hasAuthorship W4299870824A5087372437 @default.
- W4299870824 hasConcept C103278499 @default.
- W4299870824 hasConcept C111012933 @default.
- W4299870824 hasConcept C111030470 @default.
- W4299870824 hasConcept C111919701 @default.
- W4299870824 hasConcept C115961682 @default.
- W4299870824 hasConcept C119857082 @default.
- W4299870824 hasConcept C124101348 @default.
- W4299870824 hasConcept C143724316 @default.
- W4299870824 hasConcept C151406439 @default.
- W4299870824 hasConcept C151730666 @default.
- W4299870824 hasConcept C153180895 @default.
- W4299870824 hasConcept C154945302 @default.
- W4299870824 hasConcept C17209119 @default.
- W4299870824 hasConcept C17212007 @default.
- W4299870824 hasConcept C177774035 @default.
- W4299870824 hasConcept C41008148 @default.
- W4299870824 hasConcept C58166 @default.
- W4299870824 hasConcept C73555534 @default.
- W4299870824 hasConcept C86803240 @default.
- W4299870824 hasConcept C88516994 @default.
- W4299870824 hasConceptScore W4299870824C103278499 @default.
- W4299870824 hasConceptScore W4299870824C111012933 @default.
- W4299870824 hasConceptScore W4299870824C111030470 @default.
- W4299870824 hasConceptScore W4299870824C111919701 @default.
- W4299870824 hasConceptScore W4299870824C115961682 @default.
- W4299870824 hasConceptScore W4299870824C119857082 @default.
- W4299870824 hasConceptScore W4299870824C124101348 @default.
- W4299870824 hasConceptScore W4299870824C143724316 @default.
- W4299870824 hasConceptScore W4299870824C151406439 @default.
- W4299870824 hasConceptScore W4299870824C151730666 @default.
- W4299870824 hasConceptScore W4299870824C153180895 @default.
- W4299870824 hasConceptScore W4299870824C154945302 @default.
- W4299870824 hasConceptScore W4299870824C17209119 @default.
- W4299870824 hasConceptScore W4299870824C17212007 @default.
- W4299870824 hasConceptScore W4299870824C177774035 @default.
- W4299870824 hasConceptScore W4299870824C41008148 @default.
- W4299870824 hasConceptScore W4299870824C58166 @default.
- W4299870824 hasConceptScore W4299870824C73555534 @default.
- W4299870824 hasConceptScore W4299870824C86803240 @default.
- W4299870824 hasConceptScore W4299870824C88516994 @default.
- W4299870824 hasFunder F4320321001 @default.
- W4299870824 hasLocation W42998708241 @default.
- W4299870824 hasLocation W42998708242 @default.
- W4299870824 hasOpenAccess W4299870824 @default.
- W4299870824 hasPrimaryLocation W42998708241 @default.
- W4299870824 hasRelatedWork W2000890305 @default.
- W4299870824 hasRelatedWork W2024919516 @default.
- W4299870824 hasRelatedWork W2387100969 @default.
- W4299870824 hasRelatedWork W2788907035 @default.
- W4299870824 hasRelatedWork W3119543425 @default.
- W4299870824 hasRelatedWork W3203713275 @default.
- W4299870824 hasRelatedWork W4284991521 @default.
- W4299870824 hasRelatedWork W4299870824 @default.
- W4299870824 hasRelatedWork W57347928 @default.
- W4299870824 hasRelatedWork W99904291 @default.
- W4299870824 isParatext "false" @default.
- W4299870824 isRetracted "false" @default.
- W4299870824 workType "article" @default.