Matches in SemOpenAlex for { <https://semopenalex.org/work/W4299968184> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4299968184 abstract "In this paper we give a quantum statistical interpretation for the bracket polynomial state sum <K> and for the Jones polynomial. We use this quantum mechanical interpretation to give a new quantum algorithm for computing the Jones polynomial. This algorithm is useful for its conceptual simplicity, and it applies to all values of the polynomial variable that lie on the unit circle in the complex plane. Letting C(K) denote the Hilbert space for this model, there is a natural unitary transformation U from C(K) to itself such that <K> = <F|U|F> where |F> is a sum over basis states for C(K). The quantum algorithm arises directly from this formula via the Hadamard Test. We then show that the framework for our quantum model for the bracket polynomial is a natural setting for Khovanov homology. The Hilbert space C(K) of our model has basis in one-to-one correspondence with the enhanced states of the bracket state summmation and is isomorphic with the chain complex for Khovanov homology with coefficients in the complex numbers. We show that for the Khovanov boundary operator d defined on C(K) we have the relationship dU + Ud = 0. Consequently, the unitary operator U acts on the Khovanov homology, and we therefore obtain a direct relationship between Khovanov homology and this quantum algorithm for the Jones polynomial. The formula for the Jones polynomial as a graded Euler characteristic is now expressed in terms of the eigenvalues of U and the Euler characteristics of the eigenspaces of U in the homology. The quantum algorithm given here is inefficient, and so it remains an open problem to determine better quantum algorithms that involve both the Jones polynomial and the Khovanov homology." @default.
- W4299968184 created "2022-10-03" @default.
- W4299968184 creator A5057018104 @default.
- W4299968184 date "2010-01-04" @default.
- W4299968184 modified "2023-10-16" @default.
- W4299968184 title "Topological Quantum Information, Khovanov Homology and the Jones Polynomial" @default.
- W4299968184 doi "https://doi.org/10.48550/arxiv.1001.0354" @default.
- W4299968184 hasPublicationYear "2010" @default.
- W4299968184 type Work @default.
- W4299968184 citedByCount "0" @default.
- W4299968184 crossrefType "posted-content" @default.
- W4299968184 hasAuthorship W4299968184A5057018104 @default.
- W4299968184 hasBestOaLocation W42999681841 @default.
- W4299968184 hasConcept C101044782 @default.
- W4299968184 hasConcept C101525915 @default.
- W4299968184 hasConcept C104317684 @default.
- W4299968184 hasConcept C118615104 @default.
- W4299968184 hasConcept C134306372 @default.
- W4299968184 hasConcept C136119220 @default.
- W4299968184 hasConcept C158512270 @default.
- W4299968184 hasConcept C165525559 @default.
- W4299968184 hasConcept C185592680 @default.
- W4299968184 hasConcept C196433757 @default.
- W4299968184 hasConcept C202444582 @default.
- W4299968184 hasConcept C33923547 @default.
- W4299968184 hasConcept C52007518 @default.
- W4299968184 hasConcept C55493867 @default.
- W4299968184 hasConcept C90119067 @default.
- W4299968184 hasConceptScore W4299968184C101044782 @default.
- W4299968184 hasConceptScore W4299968184C101525915 @default.
- W4299968184 hasConceptScore W4299968184C104317684 @default.
- W4299968184 hasConceptScore W4299968184C118615104 @default.
- W4299968184 hasConceptScore W4299968184C134306372 @default.
- W4299968184 hasConceptScore W4299968184C136119220 @default.
- W4299968184 hasConceptScore W4299968184C158512270 @default.
- W4299968184 hasConceptScore W4299968184C165525559 @default.
- W4299968184 hasConceptScore W4299968184C185592680 @default.
- W4299968184 hasConceptScore W4299968184C196433757 @default.
- W4299968184 hasConceptScore W4299968184C202444582 @default.
- W4299968184 hasConceptScore W4299968184C33923547 @default.
- W4299968184 hasConceptScore W4299968184C52007518 @default.
- W4299968184 hasConceptScore W4299968184C55493867 @default.
- W4299968184 hasConceptScore W4299968184C90119067 @default.
- W4299968184 hasLocation W42999681841 @default.
- W4299968184 hasLocation W42999681842 @default.
- W4299968184 hasOpenAccess W4299968184 @default.
- W4299968184 hasPrimaryLocation W42999681841 @default.
- W4299968184 hasRelatedWork W1491874315 @default.
- W4299968184 hasRelatedWork W1528656405 @default.
- W4299968184 hasRelatedWork W1618316728 @default.
- W4299968184 hasRelatedWork W2050641972 @default.
- W4299968184 hasRelatedWork W2098049351 @default.
- W4299968184 hasRelatedWork W2900918889 @default.
- W4299968184 hasRelatedWork W2952544215 @default.
- W4299968184 hasRelatedWork W2953671644 @default.
- W4299968184 hasRelatedWork W4289108587 @default.
- W4299968184 hasRelatedWork W4295162781 @default.
- W4299968184 isParatext "false" @default.
- W4299968184 isRetracted "false" @default.
- W4299968184 workType "article" @default.