Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300024653> ?p ?o ?g. }
- W4300024653 endingPage "134" @default.
- W4300024653 startingPage "121" @default.
- W4300024653 abstract "In a typical human activity recognition (HAR) system, human activities are recognized by collecting data from inertial sensors (i.e., Inertial measurement unit (IMU)) or visual sensors (i.e., cameras). Then, the collected data is labelled with human activities. In turn, the data is used to train machine learning (ML) or deep learning (DL) models. HAR systems are widely used in different applications such as security, healthcare, the Internet of Things (IoT), and sports domains. The highest accuracy rates are achieved by DL models. In this context, we review the recent advancements of HAR systems in three trendy domains, namely, 1) sports science, 2) healthcare, and 3) security. The aim of this review is to reveal the most widely used DL architectures alongside the highest achieved accuracy rates in each of these domains. Both the Convolution Neural Network (CNN) and the Long Short Term Memory (LSTM) architectures achieved the best performance in both fields of sports science and healthcare. In the security field, the best performance was achieved by the adapted VGG-16 model." @default.
- W4300024653 created "2022-10-03" @default.
- W4300024653 creator A5025707658 @default.
- W4300024653 creator A5036300152 @default.
- W4300024653 creator A5039175317 @default.
- W4300024653 creator A5040915874 @default.
- W4300024653 creator A5041363887 @default.
- W4300024653 creator A5064323998 @default.
- W4300024653 date "2022-01-01" @default.
- W4300024653 modified "2023-10-13" @default.
- W4300024653 title "A Survey on Deep Learning Architectures in Human Activities Recognition Application in Sports Science, Healthcare, and Security" @default.
- W4300024653 cites W1861492603 @default.
- W4300024653 cites W2015200434 @default.
- W4300024653 cites W2038176251 @default.
- W4300024653 cites W2080873731 @default.
- W4300024653 cites W2089028794 @default.
- W4300024653 cites W2144380653 @default.
- W4300024653 cites W2555209581 @default.
- W4300024653 cites W2559085405 @default.
- W4300024653 cites W2582769230 @default.
- W4300024653 cites W2783192928 @default.
- W4300024653 cites W2808002844 @default.
- W4300024653 cites W2893511508 @default.
- W4300024653 cites W2919910909 @default.
- W4300024653 cites W2964134613 @default.
- W4300024653 cites W2964199361 @default.
- W4300024653 cites W2999039416 @default.
- W4300024653 cites W3015014633 @default.
- W4300024653 cites W3018661145 @default.
- W4300024653 cites W3024312292 @default.
- W4300024653 cites W3027927919 @default.
- W4300024653 cites W3033847194 @default.
- W4300024653 cites W3037831098 @default.
- W4300024653 cites W3099616155 @default.
- W4300024653 cites W3128392215 @default.
- W4300024653 cites W3129002371 @default.
- W4300024653 cites W3151501481 @default.
- W4300024653 cites W3157017075 @default.
- W4300024653 cites W3177283294 @default.
- W4300024653 cites W3179908637 @default.
- W4300024653 cites W3192718307 @default.
- W4300024653 cites W3196041777 @default.
- W4300024653 cites W3198134962 @default.
- W4300024653 cites W3201909415 @default.
- W4300024653 cites W3210499937 @default.
- W4300024653 cites W3212181754 @default.
- W4300024653 cites W3215162869 @default.
- W4300024653 cites W3217031479 @default.
- W4300024653 cites W4200176196 @default.
- W4300024653 cites W4205189339 @default.
- W4300024653 cites W4211116393 @default.
- W4300024653 cites W4214624668 @default.
- W4300024653 cites W4226363341 @default.
- W4300024653 cites W4249279051 @default.
- W4300024653 doi "https://doi.org/10.1007/978-3-031-14054-9_13" @default.
- W4300024653 hasPublicationYear "2022" @default.
- W4300024653 type Work @default.
- W4300024653 citedByCount "2" @default.
- W4300024653 countsByYear W43000246532023 @default.
- W4300024653 crossrefType "book-chapter" @default.
- W4300024653 hasAuthorship W4300024653A5025707658 @default.
- W4300024653 hasAuthorship W4300024653A5036300152 @default.
- W4300024653 hasAuthorship W4300024653A5039175317 @default.
- W4300024653 hasAuthorship W4300024653A5040915874 @default.
- W4300024653 hasAuthorship W4300024653A5041363887 @default.
- W4300024653 hasAuthorship W4300024653A5064323998 @default.
- W4300024653 hasConcept C108583219 @default.
- W4300024653 hasConcept C119857082 @default.
- W4300024653 hasConcept C121687571 @default.
- W4300024653 hasConcept C154945302 @default.
- W4300024653 hasConcept C160735492 @default.
- W4300024653 hasConcept C162324750 @default.
- W4300024653 hasConcept C166957645 @default.
- W4300024653 hasConcept C202444582 @default.
- W4300024653 hasConcept C205649164 @default.
- W4300024653 hasConcept C2522767166 @default.
- W4300024653 hasConcept C2779343474 @default.
- W4300024653 hasConcept C33923547 @default.
- W4300024653 hasConcept C38652104 @default.
- W4300024653 hasConcept C41008148 @default.
- W4300024653 hasConcept C50522688 @default.
- W4300024653 hasConcept C79061980 @default.
- W4300024653 hasConcept C81363708 @default.
- W4300024653 hasConcept C81860439 @default.
- W4300024653 hasConcept C9652623 @default.
- W4300024653 hasConceptScore W4300024653C108583219 @default.
- W4300024653 hasConceptScore W4300024653C119857082 @default.
- W4300024653 hasConceptScore W4300024653C121687571 @default.
- W4300024653 hasConceptScore W4300024653C154945302 @default.
- W4300024653 hasConceptScore W4300024653C160735492 @default.
- W4300024653 hasConceptScore W4300024653C162324750 @default.
- W4300024653 hasConceptScore W4300024653C166957645 @default.
- W4300024653 hasConceptScore W4300024653C202444582 @default.
- W4300024653 hasConceptScore W4300024653C205649164 @default.
- W4300024653 hasConceptScore W4300024653C2522767166 @default.
- W4300024653 hasConceptScore W4300024653C2779343474 @default.
- W4300024653 hasConceptScore W4300024653C33923547 @default.
- W4300024653 hasConceptScore W4300024653C38652104 @default.