Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300167029> ?p ?o ?g. }
- W4300167029 endingPage "193" @default.
- W4300167029 startingPage "177" @default.
- W4300167029 abstract "Recognizing that diverse morphologies of neurons are reminiscent of structures of branched polymers, we put forward a principled and systematic way of classifying neurons that employs the ideas of polymer physics. In particular, we use 3D coordinates of individual neurons, which are accessible in recent neuron reconstruction datasets from electron microscope images. We numerically calculate the form factor, F(q), a Fourier transform of the distance distribution of particles comprising an object of interest, which is routinely measured in scattering experiments to quantitatively characterize the structure of materials. For a polymer-like object consisting of n monomers spanning over a length scale of r, F(q) scales with the wavenumber $$q(=2pi /r)$$ as $$F(q)sim q^{-mathcal {D}}$$ at an intermediate range of q, where $$mathcal {D}$$ is the fractal dimension or the inverse scaling exponent ( $$mathcal {D}=nu ^{-1}$$ ) characterizing the geometrical feature ( $$rsim n^{nu }$$ ) of the object. F(q) can be used to describe a neuron morphology in terms of its size ( $$R_n$$ ) and the extent of branching quantified by $$mathcal {D}$$ . By defining the distance between F(q)s as a measure of similarity between two neuronal morphologies, we tackle the neuron classification problem. In comparison with other existing classification methods for neuronal morphologies, our F(q)-based classification rests solely on 3D coordinates of neurons with no prior knowledge of morphological features. When applied to publicly available neuron datasets from three different organisms, our method not only complements other methods but also offers a physical picture of how the dendritic and axonal branches of an individual neuron fill the space of dense neural networks inside the brain." @default.
- W4300167029 created "2022-10-03" @default.
- W4300167029 creator A5009998609 @default.
- W4300167029 creator A5026267803 @default.
- W4300167029 creator A5061861055 @default.
- W4300167029 date "2022-10-03" @default.
- W4300167029 modified "2023-10-18" @default.
- W4300167029 title "Polymer Physics-Based Classification of Neurons" @default.
- W4300167029 cites W1532017810 @default.
- W4300167029 cites W1608755739 @default.
- W4300167029 cites W1975389666 @default.
- W4300167029 cites W1977585202 @default.
- W4300167029 cites W1977880382 @default.
- W4300167029 cites W1985208669 @default.
- W4300167029 cites W1987292464 @default.
- W4300167029 cites W1988402984 @default.
- W4300167029 cites W1988998651 @default.
- W4300167029 cites W1994976059 @default.
- W4300167029 cites W1994992542 @default.
- W4300167029 cites W1999837788 @default.
- W4300167029 cites W2004921550 @default.
- W4300167029 cites W2007209883 @default.
- W4300167029 cites W2012756610 @default.
- W4300167029 cites W2013422844 @default.
- W4300167029 cites W2022387796 @default.
- W4300167029 cites W2030036724 @default.
- W4300167029 cites W2033579242 @default.
- W4300167029 cites W2040092971 @default.
- W4300167029 cites W2041017511 @default.
- W4300167029 cites W2044111271 @default.
- W4300167029 cites W2047155872 @default.
- W4300167029 cites W2048054368 @default.
- W4300167029 cites W2053083724 @default.
- W4300167029 cites W2057591350 @default.
- W4300167029 cites W2061897019 @default.
- W4300167029 cites W2062986942 @default.
- W4300167029 cites W2064861953 @default.
- W4300167029 cites W2064863523 @default.
- W4300167029 cites W2066096726 @default.
- W4300167029 cites W2069356218 @default.
- W4300167029 cites W2074633779 @default.
- W4300167029 cites W2076792376 @default.
- W4300167029 cites W2078932002 @default.
- W4300167029 cites W2083735851 @default.
- W4300167029 cites W2086245205 @default.
- W4300167029 cites W2097186487 @default.
- W4300167029 cites W2098580305 @default.
- W4300167029 cites W2115354701 @default.
- W4300167029 cites W2116069637 @default.
- W4300167029 cites W2117794907 @default.
- W4300167029 cites W2131683071 @default.
- W4300167029 cites W2151300247 @default.
- W4300167029 cites W2152255315 @default.
- W4300167029 cites W2156100123 @default.
- W4300167029 cites W2156247618 @default.
- W4300167029 cites W2158947594 @default.
- W4300167029 cites W2160938187 @default.
- W4300167029 cites W2161659751 @default.
- W4300167029 cites W2163211542 @default.
- W4300167029 cites W2164024181 @default.
- W4300167029 cites W2337689732 @default.
- W4300167029 cites W2505896647 @default.
- W4300167029 cites W2547711524 @default.
- W4300167029 cites W2555537874 @default.
- W4300167029 cites W2744478946 @default.
- W4300167029 cites W2794495549 @default.
- W4300167029 cites W2807998183 @default.
- W4300167029 cites W2890270531 @default.
- W4300167029 cites W2890292748 @default.
- W4300167029 cites W2899447162 @default.
- W4300167029 cites W2904436729 @default.
- W4300167029 cites W2949311293 @default.
- W4300167029 cites W2949808130 @default.
- W4300167029 cites W2950782656 @default.
- W4300167029 cites W2953939169 @default.
- W4300167029 cites W2982557070 @default.
- W4300167029 cites W2992726982 @default.
- W4300167029 cites W2994737554 @default.
- W4300167029 cites W2998003832 @default.
- W4300167029 cites W3016007634 @default.
- W4300167029 cites W3022694940 @default.
- W4300167029 cites W3038854314 @default.
- W4300167029 cites W3118577024 @default.
- W4300167029 cites W3129538072 @default.
- W4300167029 cites W3176761643 @default.
- W4300167029 cites W4206390760 @default.
- W4300167029 cites W4313135961 @default.
- W4300167029 doi "https://doi.org/10.1007/s12021-022-09605-3" @default.
- W4300167029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36190621" @default.
- W4300167029 hasPublicationYear "2022" @default.
- W4300167029 type Work @default.
- W4300167029 citedByCount "1" @default.
- W4300167029 countsByYear W43001670292022 @default.
- W4300167029 crossrefType "journal-article" @default.
- W4300167029 hasAuthorship W4300167029A5009998609 @default.
- W4300167029 hasAuthorship W4300167029A5026267803 @default.
- W4300167029 hasAuthorship W4300167029A5061861055 @default.
- W4300167029 hasBestOaLocation W43001670292 @default.