Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300248839> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4300248839 abstract "Cancer genomes exhibit a large number of different alterations that affect many genes in a diverse manner. It is widely believed that these alterations follow combinatorial patterns that have a strong connection with the underlying molecular interaction networks and functional pathways. A better understanding of the generative mechanisms behind the mutation rules and their influence on gene communities is of great importance for the process of driver mutations discovery and for identification of network modules related to cancer development and progression. We developed a new method for cancer mutation pattern analysis based on a constrained form of correlation clustering. Correlation clustering is an agnostic learning method that can be used for general community detection problems in which the number of communities or their structure is not known beforehand. The resulting algorithm, named $C^3$, leverages mutual exclusivity of mutations, patient coverage, and driver network concentration principles; it accepts as its input a user determined combination of heterogeneous patient data, such as that available from TCGA (including mutation, copy number, and gene expression information), and creates a large number of clusters containing mutually exclusive mutated genes in a particular type of cancer. The cluster sizes may be required to obey some useful soft size constraints, without impacting the computational complexity of the algorithm. To test $C^3$, we performed a detailed analysis on TCGA breast cancer and glioblastoma data and showed that our algorithm outperforms the state-of-the-art CoMEt method in terms of discovering mutually exclusive gene modules and identifying driver genes. Our $C^3$ method represents a unique tool for efficient and reliable identification of mutation patterns and driver pathways in large-scale cancer genomics studies." @default.
- W4300248839 created "2022-10-03" @default.
- W4300248839 creator A5009196285 @default.
- W4300248839 creator A5031977700 @default.
- W4300248839 creator A5076238425 @default.
- W4300248839 creator A5084947882 @default.
- W4300248839 creator A5090283553 @default.
- W4300248839 date "2016-01-24" @default.
- W4300248839 modified "2023-10-18" @default.
- W4300248839 title "A new correlation clustering method for cancer mutation analysis" @default.
- W4300248839 doi "https://doi.org/10.48550/arxiv.1601.06476" @default.
- W4300248839 hasPublicationYear "2016" @default.
- W4300248839 type Work @default.
- W4300248839 citedByCount "0" @default.
- W4300248839 crossrefType "posted-content" @default.
- W4300248839 hasAuthorship W4300248839A5009196285 @default.
- W4300248839 hasAuthorship W4300248839A5031977700 @default.
- W4300248839 hasAuthorship W4300248839A5076238425 @default.
- W4300248839 hasAuthorship W4300248839A5084947882 @default.
- W4300248839 hasAuthorship W4300248839A5090283553 @default.
- W4300248839 hasBestOaLocation W43002488391 @default.
- W4300248839 hasConcept C104317684 @default.
- W4300248839 hasConcept C116834253 @default.
- W4300248839 hasConcept C117220453 @default.
- W4300248839 hasConcept C119857082 @default.
- W4300248839 hasConcept C124101348 @default.
- W4300248839 hasConcept C2524010 @default.
- W4300248839 hasConcept C33923547 @default.
- W4300248839 hasConcept C41008148 @default.
- W4300248839 hasConcept C501734568 @default.
- W4300248839 hasConcept C54355233 @default.
- W4300248839 hasConcept C59822182 @default.
- W4300248839 hasConcept C70721500 @default.
- W4300248839 hasConcept C73555534 @default.
- W4300248839 hasConcept C86803240 @default.
- W4300248839 hasConceptScore W4300248839C104317684 @default.
- W4300248839 hasConceptScore W4300248839C116834253 @default.
- W4300248839 hasConceptScore W4300248839C117220453 @default.
- W4300248839 hasConceptScore W4300248839C119857082 @default.
- W4300248839 hasConceptScore W4300248839C124101348 @default.
- W4300248839 hasConceptScore W4300248839C2524010 @default.
- W4300248839 hasConceptScore W4300248839C33923547 @default.
- W4300248839 hasConceptScore W4300248839C41008148 @default.
- W4300248839 hasConceptScore W4300248839C501734568 @default.
- W4300248839 hasConceptScore W4300248839C54355233 @default.
- W4300248839 hasConceptScore W4300248839C59822182 @default.
- W4300248839 hasConceptScore W4300248839C70721500 @default.
- W4300248839 hasConceptScore W4300248839C73555534 @default.
- W4300248839 hasConceptScore W4300248839C86803240 @default.
- W4300248839 hasLocation W43002488391 @default.
- W4300248839 hasLocation W43002488392 @default.
- W4300248839 hasOpenAccess W4300248839 @default.
- W4300248839 hasPrimaryLocation W43002488391 @default.
- W4300248839 hasRelatedWork W1834608617 @default.
- W4300248839 hasRelatedWork W1999627569 @default.
- W4300248839 hasRelatedWork W2001677368 @default.
- W4300248839 hasRelatedWork W2009966535 @default.
- W4300248839 hasRelatedWork W2019988726 @default.
- W4300248839 hasRelatedWork W2088063203 @default.
- W4300248839 hasRelatedWork W2120393042 @default.
- W4300248839 hasRelatedWork W2171277769 @default.
- W4300248839 hasRelatedWork W2380998760 @default.
- W4300248839 hasRelatedWork W2737926459 @default.
- W4300248839 isParatext "false" @default.
- W4300248839 isRetracted "false" @default.
- W4300248839 workType "article" @default.