Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300475021> ?p ?o ?g. }
- W4300475021 endingPage "499" @default.
- W4300475021 startingPage "487" @default.
- W4300475021 abstract "Recently, automatic and accurate polyp segmentation has become an emerging yet challenging issue. Although convolutional neural networks (CNNs) exhibit a promising future modality to address this issue, most CNN-based methods highly require extensive labeled data. Unfortunately, there is a lack of large-scale public colorectal polyp segmentation datasets in the clinical community and academia. In this study, we construct a new benchmark dataset, which includes 2163 colonoscopy images and their pixel-wise annotations. Moreover, for intelligent polyp segmentation, we propose a novel adaptive context exploration network (ACENet). Our ACENet follows an encoder-decoder architecture and consists of two key modules, i.e., an attentional atrous spatial pyramid pooling (AASPP) module and an adaptive context extraction (ACE) module. The AASPP fuses semantic features from the encoder, and generates the global guidance information for the following decoder. The ACE captures multi-scale features and aggregates them by a branch-wise attention mechanism. Benefiting from these two modules, our ACENet is capable of adaptively exploring the context features to locate and detect the polyp regions effectively. Extensive experiments on the collected dataset and four publicly available datasets show that the proposed ACENet achieves superior performance on five evaluation metrics over three mainstream categories of the state-of-the-art methods." @default.
- W4300475021 created "2022-10-03" @default.
- W4300475021 creator A5000581688 @default.
- W4300475021 creator A5024931596 @default.
- W4300475021 creator A5030883042 @default.
- W4300475021 creator A5033747497 @default.
- W4300475021 creator A5046543349 @default.
- W4300475021 creator A5050309466 @default.
- W4300475021 creator A5080596209 @default.
- W4300475021 creator A5080926287 @default.
- W4300475021 creator A5085254957 @default.
- W4300475021 date "2023-04-01" @default.
- W4300475021 modified "2023-10-16" @default.
- W4300475021 title "Adaptive Context Exploration Network for Polyp Segmentation in Colonoscopy Images" @default.
- W4300475021 cites W1857212626 @default.
- W4300475021 cites W1903029394 @default.
- W4300475021 cites W2008359794 @default.
- W4300475021 cites W2012036148 @default.
- W4300475021 cites W2021088830 @default.
- W4300475021 cites W2077474654 @default.
- W4300475021 cites W2086791339 @default.
- W4300475021 cites W2106904071 @default.
- W4300475021 cites W2117539524 @default.
- W4300475021 cites W2140753590 @default.
- W4300475021 cites W2285968993 @default.
- W4300475021 cites W2320150036 @default.
- W4300475021 cites W2412782625 @default.
- W4300475021 cites W2560328367 @default.
- W4300475021 cites W2565639579 @default.
- W4300475021 cites W2601564443 @default.
- W4300475021 cites W2622388981 @default.
- W4300475021 cites W2799213142 @default.
- W4300475021 cites W2894010682 @default.
- W4300475021 cites W2898910301 @default.
- W4300475021 cites W2913629396 @default.
- W4300475021 cites W2928133111 @default.
- W4300475021 cites W2928165649 @default.
- W4300475021 cites W2955058313 @default.
- W4300475021 cites W2963112696 @default.
- W4300475021 cites W2964274014 @default.
- W4300475021 cites W2979515228 @default.
- W4300475021 cites W2989692526 @default.
- W4300475021 cites W2996290406 @default.
- W4300475021 cites W2997286550 @default.
- W4300475021 cites W2999580839 @default.
- W4300475021 cites W3008070655 @default.
- W4300475021 cites W3019493961 @default.
- W4300475021 cites W3023282579 @default.
- W4300475021 cites W3028954669 @default.
- W4300475021 cites W3048524582 @default.
- W4300475021 cites W3090492687 @default.
- W4300475021 cites W3091630951 @default.
- W4300475021 cites W3091770821 @default.
- W4300475021 cites W3092344722 @default.
- W4300475021 cites W3122006940 @default.
- W4300475021 cites W3129024795 @default.
- W4300475021 cites W3135262214 @default.
- W4300475021 cites W3158022345 @default.
- W4300475021 cites W3174248541 @default.
- W4300475021 cites W3174565742 @default.
- W4300475021 cites W3195868619 @default.
- W4300475021 cites W3198147788 @default.
- W4300475021 cites W3210532697 @default.
- W4300475021 cites W4200026756 @default.
- W4300475021 cites W4206715824 @default.
- W4300475021 doi "https://doi.org/10.1109/tetci.2022.3193677" @default.
- W4300475021 hasPublicationYear "2023" @default.
- W4300475021 type Work @default.
- W4300475021 citedByCount "3" @default.
- W4300475021 countsByYear W43004750212023 @default.
- W4300475021 crossrefType "journal-article" @default.
- W4300475021 hasAuthorship W4300475021A5000581688 @default.
- W4300475021 hasAuthorship W4300475021A5024931596 @default.
- W4300475021 hasAuthorship W4300475021A5030883042 @default.
- W4300475021 hasAuthorship W4300475021A5033747497 @default.
- W4300475021 hasAuthorship W4300475021A5046543349 @default.
- W4300475021 hasAuthorship W4300475021A5050309466 @default.
- W4300475021 hasAuthorship W4300475021A5080596209 @default.
- W4300475021 hasAuthorship W4300475021A5080926287 @default.
- W4300475021 hasAuthorship W4300475021A5085254957 @default.
- W4300475021 hasConcept C111919701 @default.
- W4300475021 hasConcept C118505674 @default.
- W4300475021 hasConcept C120665830 @default.
- W4300475021 hasConcept C121332964 @default.
- W4300475021 hasConcept C124504099 @default.
- W4300475021 hasConcept C142575187 @default.
- W4300475021 hasConcept C151730666 @default.
- W4300475021 hasConcept C153180895 @default.
- W4300475021 hasConcept C154945302 @default.
- W4300475021 hasConcept C185798385 @default.
- W4300475021 hasConcept C205649164 @default.
- W4300475021 hasConcept C2779343474 @default.
- W4300475021 hasConcept C31972630 @default.
- W4300475021 hasConcept C41008148 @default.
- W4300475021 hasConcept C58640448 @default.
- W4300475021 hasConcept C70437156 @default.
- W4300475021 hasConcept C81363708 @default.
- W4300475021 hasConcept C86803240 @default.