Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300486582> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4300486582 abstract "Let $mathcal{H}_d^{(t)}$ ($t geq -d$, $t>-3$) be the reproducing kernel Hilbert space on the unit ball $mathbb{B}_d$ with kernel [ k(z,w) = frac{1}{(1-langle z, w rangle)^{d+t+1}} . ] We prove that if an ideal $I triangleleft mathbb{C}[z_1, ldots, z_d]$ (not necessarily homogeneous) has what we call the approximate stable division property, then the closure of $I$ in $mathcal{H}_d^{(t)}$ is $p$-essentially normal for all $p>d$. We then show that all quasi homogeneous ideals in two variables have the stable division property, and combine these two results to obtain a new proof of the fact that the closure of any quasi homogeneous ideal in $mathbb{C}[x,y]$ is $p$-essentially normal for $p>2$." @default.
- W4300486582 created "2022-10-03" @default.
- W4300486582 creator A5028093822 @default.
- W4300486582 creator A5086775501 @default.
- W4300486582 date "2015-04-14" @default.
- W4300486582 modified "2023-10-03" @default.
- W4300486582 title "Stable division and essential normality: the non-homogeneous and quasi homogeneous cases" @default.
- W4300486582 doi "https://doi.org/10.48550/arxiv.1504.03465" @default.
- W4300486582 hasPublicationYear "2015" @default.
- W4300486582 type Work @default.
- W4300486582 citedByCount "0" @default.
- W4300486582 crossrefType "posted-content" @default.
- W4300486582 hasAuthorship W4300486582A5028093822 @default.
- W4300486582 hasAuthorship W4300486582A5086775501 @default.
- W4300486582 hasBestOaLocation W43004865821 @default.
- W4300486582 hasConcept C111472728 @default.
- W4300486582 hasConcept C114614502 @default.
- W4300486582 hasConcept C118615104 @default.
- W4300486582 hasConcept C138885662 @default.
- W4300486582 hasConcept C146834321 @default.
- W4300486582 hasConcept C162324750 @default.
- W4300486582 hasConcept C191948623 @default.
- W4300486582 hasConcept C202444582 @default.
- W4300486582 hasConcept C2776639384 @default.
- W4300486582 hasConcept C33923547 @default.
- W4300486582 hasConcept C34447519 @default.
- W4300486582 hasConcept C60798267 @default.
- W4300486582 hasConcept C62799726 @default.
- W4300486582 hasConcept C66882249 @default.
- W4300486582 hasConcept C94375191 @default.
- W4300486582 hasConceptScore W4300486582C111472728 @default.
- W4300486582 hasConceptScore W4300486582C114614502 @default.
- W4300486582 hasConceptScore W4300486582C118615104 @default.
- W4300486582 hasConceptScore W4300486582C138885662 @default.
- W4300486582 hasConceptScore W4300486582C146834321 @default.
- W4300486582 hasConceptScore W4300486582C162324750 @default.
- W4300486582 hasConceptScore W4300486582C191948623 @default.
- W4300486582 hasConceptScore W4300486582C202444582 @default.
- W4300486582 hasConceptScore W4300486582C2776639384 @default.
- W4300486582 hasConceptScore W4300486582C33923547 @default.
- W4300486582 hasConceptScore W4300486582C34447519 @default.
- W4300486582 hasConceptScore W4300486582C60798267 @default.
- W4300486582 hasConceptScore W4300486582C62799726 @default.
- W4300486582 hasConceptScore W4300486582C66882249 @default.
- W4300486582 hasConceptScore W4300486582C94375191 @default.
- W4300486582 hasLocation W43004865821 @default.
- W4300486582 hasOpenAccess W4300486582 @default.
- W4300486582 hasPrimaryLocation W43004865821 @default.
- W4300486582 hasRelatedWork W1482827353 @default.
- W4300486582 hasRelatedWork W1978042415 @default.
- W4300486582 hasRelatedWork W1999554193 @default.
- W4300486582 hasRelatedWork W2044860640 @default.
- W4300486582 hasRelatedWork W2059045734 @default.
- W4300486582 hasRelatedWork W2062781507 @default.
- W4300486582 hasRelatedWork W2080003215 @default.
- W4300486582 hasRelatedWork W2606992953 @default.
- W4300486582 hasRelatedWork W2963765461 @default.
- W4300486582 hasRelatedWork W3086542228 @default.
- W4300486582 isParatext "false" @default.
- W4300486582 isRetracted "false" @default.
- W4300486582 workType "article" @default.