Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300488966> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4300488966 abstract "In this paper we study multipliers on graded nilpotent Lie groups defined via group Fourier transform. More precisely, we show that Hormander type conditions on the Fourier multipliers imply $L^p$-boundedness. We express these conditions using difference operators and positive Rockland operators. We also obtain a more refined condition using Sobolev spaces on the dual of the group which are defined and studied in this paper." @default.
- W4300488966 created "2022-10-03" @default.
- W4300488966 creator A5000394811 @default.
- W4300488966 creator A5014446077 @default.
- W4300488966 date "2014-11-25" @default.
- W4300488966 modified "2023-10-16" @default.
- W4300488966 title "Fourier multipliers on graded Lie groups" @default.
- W4300488966 doi "https://doi.org/10.48550/arxiv.1411.6950" @default.
- W4300488966 hasPublicationYear "2014" @default.
- W4300488966 type Work @default.
- W4300488966 citedByCount "0" @default.
- W4300488966 crossrefType "posted-content" @default.
- W4300488966 hasAuthorship W4300488966A5000394811 @default.
- W4300488966 hasAuthorship W4300488966A5014446077 @default.
- W4300488966 hasBestOaLocation W43004889661 @default.
- W4300488966 hasConcept C102519508 @default.
- W4300488966 hasConcept C121332964 @default.
- W4300488966 hasConcept C124584101 @default.
- W4300488966 hasConcept C134306372 @default.
- W4300488966 hasConcept C139719470 @default.
- W4300488966 hasConcept C162324750 @default.
- W4300488966 hasConcept C187915474 @default.
- W4300488966 hasConcept C202444582 @default.
- W4300488966 hasConcept C2781311116 @default.
- W4300488966 hasConcept C33923547 @default.
- W4300488966 hasConcept C50555996 @default.
- W4300488966 hasConcept C62520636 @default.
- W4300488966 hasConcept C99730327 @default.
- W4300488966 hasConceptScore W4300488966C102519508 @default.
- W4300488966 hasConceptScore W4300488966C121332964 @default.
- W4300488966 hasConceptScore W4300488966C124584101 @default.
- W4300488966 hasConceptScore W4300488966C134306372 @default.
- W4300488966 hasConceptScore W4300488966C139719470 @default.
- W4300488966 hasConceptScore W4300488966C162324750 @default.
- W4300488966 hasConceptScore W4300488966C187915474 @default.
- W4300488966 hasConceptScore W4300488966C202444582 @default.
- W4300488966 hasConceptScore W4300488966C2781311116 @default.
- W4300488966 hasConceptScore W4300488966C33923547 @default.
- W4300488966 hasConceptScore W4300488966C50555996 @default.
- W4300488966 hasConceptScore W4300488966C62520636 @default.
- W4300488966 hasConceptScore W4300488966C99730327 @default.
- W4300488966 hasLocation W43004889661 @default.
- W4300488966 hasLocation W43004889662 @default.
- W4300488966 hasLocation W43004889663 @default.
- W4300488966 hasLocation W43004889664 @default.
- W4300488966 hasOpenAccess W4300488966 @default.
- W4300488966 hasPrimaryLocation W43004889661 @default.
- W4300488966 hasRelatedWork W1987381297 @default.
- W4300488966 hasRelatedWork W2474013269 @default.
- W4300488966 hasRelatedWork W2901496727 @default.
- W4300488966 hasRelatedWork W2954160600 @default.
- W4300488966 hasRelatedWork W2963005948 @default.
- W4300488966 hasRelatedWork W2963450278 @default.
- W4300488966 hasRelatedWork W3011491025 @default.
- W4300488966 hasRelatedWork W3012218436 @default.
- W4300488966 hasRelatedWork W4242595863 @default.
- W4300488966 hasRelatedWork W4248510752 @default.
- W4300488966 isParatext "false" @default.
- W4300488966 isRetracted "false" @default.
- W4300488966 workType "article" @default.