Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300502610> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4300502610 abstract "Topological data analysis is becoming a popular way to study high dimensional feature spaces without any contextual clues or assumptions. This paper concerns itself with one popular topological feature, which is the number of $d-$dimensional holes in the dataset, also known as the Betti$-d$ number. The persistence of the Betti numbers over various scales is encoded into a persistence diagram (PD), which indicates the birth and death times of these holes as scale varies. A common way to compare PDs is by a point-to-point matching, which is given by the $n$-Wasserstein metric. However, a big drawback of this approach is the need to solve correspondence between points before computing the distance; for $n$ points, the complexity grows according to $mathcal{O}($n$^3)$. Instead, we propose to use an entirely new framework built on Riemannian geometry, that models PDs as 2D probability density functions that are represented in the square-root framework on a Hilbert Sphere. The resulting space is much more intuitive with closed form expressions for common operations. The distance metric is 1) correspondence-free and also 2) independent of the number of points in the dataset. The complexity of computing distance between PDs now grows according to $mathcal{O}(K^2)$, for a $K times K$ discretization of $[0,1]^2$. This also enables the use of existing machinery in differential geometry towards statistical analysis of PDs such as computing the mean, geodesics, classification etc. We report competitive results with the Wasserstein metric, at a much lower computational load, indicating the favorable properties of the proposed approach." @default.
- W4300502610 created "2022-10-03" @default.
- W4300502610 creator A5026742436 @default.
- W4300502610 creator A5028296951 @default.
- W4300502610 creator A5062945520 @default.
- W4300502610 creator A5081874896 @default.
- W4300502610 date "2016-05-28" @default.
- W4300502610 modified "2023-09-26" @default.
- W4300502610 title "A Riemannian Framework for Statistical Analysis of Topological Persistence Diagrams" @default.
- W4300502610 doi "https://doi.org/10.48550/arxiv.1605.08912" @default.
- W4300502610 hasPublicationYear "2016" @default.
- W4300502610 type Work @default.
- W4300502610 citedByCount "0" @default.
- W4300502610 crossrefType "posted-content" @default.
- W4300502610 hasAuthorship W4300502610A5026742436 @default.
- W4300502610 hasAuthorship W4300502610A5028296951 @default.
- W4300502610 hasAuthorship W4300502610A5062945520 @default.
- W4300502610 hasAuthorship W4300502610A5081874896 @default.
- W4300502610 hasBestOaLocation W43005026101 @default.
- W4300502610 hasConcept C11413529 @default.
- W4300502610 hasConcept C114614502 @default.
- W4300502610 hasConcept C118615104 @default.
- W4300502610 hasConcept C129621563 @default.
- W4300502610 hasConcept C162324750 @default.
- W4300502610 hasConcept C165818556 @default.
- W4300502610 hasConcept C176217482 @default.
- W4300502610 hasConcept C181104567 @default.
- W4300502610 hasConcept C184720557 @default.
- W4300502610 hasConcept C198043062 @default.
- W4300502610 hasConcept C202444582 @default.
- W4300502610 hasConcept C21547014 @default.
- W4300502610 hasConcept C2524010 @default.
- W4300502610 hasConcept C2776477805 @default.
- W4300502610 hasConcept C2874115 @default.
- W4300502610 hasConcept C33923547 @default.
- W4300502610 hasConceptScore W4300502610C11413529 @default.
- W4300502610 hasConceptScore W4300502610C114614502 @default.
- W4300502610 hasConceptScore W4300502610C118615104 @default.
- W4300502610 hasConceptScore W4300502610C129621563 @default.
- W4300502610 hasConceptScore W4300502610C162324750 @default.
- W4300502610 hasConceptScore W4300502610C165818556 @default.
- W4300502610 hasConceptScore W4300502610C176217482 @default.
- W4300502610 hasConceptScore W4300502610C181104567 @default.
- W4300502610 hasConceptScore W4300502610C184720557 @default.
- W4300502610 hasConceptScore W4300502610C198043062 @default.
- W4300502610 hasConceptScore W4300502610C202444582 @default.
- W4300502610 hasConceptScore W4300502610C21547014 @default.
- W4300502610 hasConceptScore W4300502610C2524010 @default.
- W4300502610 hasConceptScore W4300502610C2776477805 @default.
- W4300502610 hasConceptScore W4300502610C2874115 @default.
- W4300502610 hasConceptScore W4300502610C33923547 @default.
- W4300502610 hasLocation W43005026101 @default.
- W4300502610 hasLocation W43005026102 @default.
- W4300502610 hasOpenAccess W4300502610 @default.
- W4300502610 hasPrimaryLocation W43005026101 @default.
- W4300502610 hasRelatedWork W2032072254 @default.
- W4300502610 hasRelatedWork W2115445832 @default.
- W4300502610 hasRelatedWork W2131760256 @default.
- W4300502610 hasRelatedWork W2950684912 @default.
- W4300502610 hasRelatedWork W2977755543 @default.
- W4300502610 hasRelatedWork W3121152928 @default.
- W4300502610 hasRelatedWork W3199064261 @default.
- W4300502610 hasRelatedWork W4225985842 @default.
- W4300502610 hasRelatedWork W4286971133 @default.
- W4300502610 hasRelatedWork W4312092442 @default.
- W4300502610 isParatext "false" @default.
- W4300502610 isRetracted "false" @default.
- W4300502610 workType "article" @default.