Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300508889> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4300508889 abstract "In order to solve the problem of low detection accuracy caused by the lack of artificial prior knowledge, the complexity of grain scattering mechanisms and the limitations of ultrasonic evaluation methods, this paper proposes an intelligent method for the grain size evaluation of metals based on the Convolutional Neural Network (CNN) by laser-ultrasonics. The pulse echo signal transmitted by the bottom surface of the titanium alloy sample was obtained by the laser ultrasonic detection system. The wavelet time-frequency graphs of laser ultrasonic waveforms were obtained based on complex Morlet wavelet basis functions with different center frequencies and bandwidths. They were chosen as the input of the CNN model constructed by the Visual Geometry Group Network (VGGNet) with a large number of small convolutional kernels and pooling layers. The VGGNet model was trained, optimized and verified by the wavelet time-frequency graph sets. The results have shown that the model can accurately predict the grain size range of metals." @default.
- W4300508889 created "2022-10-03" @default.
- W4300508889 creator A5021471823 @default.
- W4300508889 creator A5036503774 @default.
- W4300508889 creator A5065260102 @default.
- W4300508889 creator A5069777899 @default.
- W4300508889 creator A5089677763 @default.
- W4300508889 date "2022-07-01" @default.
- W4300508889 modified "2023-09-26" @default.
- W4300508889 title "Application of deep learning in nondestructive evaluation of metal microstructural grain size" @default.
- W4300508889 cites W1908547343 @default.
- W4300508889 cites W2029064352 @default.
- W4300508889 cites W2075333783 @default.
- W4300508889 cites W2119003858 @default.
- W4300508889 cites W2533201948 @default.
- W4300508889 cites W2790800047 @default.
- W4300508889 cites W2907551904 @default.
- W4300508889 cites W2953403685 @default.
- W4300508889 cites W2969852726 @default.
- W4300508889 cites W3155305401 @default.
- W4300508889 cites W3168678097 @default.
- W4300508889 cites W4200342016 @default.
- W4300508889 doi "https://doi.org/10.1109/icceai55464.2022.00124" @default.
- W4300508889 hasPublicationYear "2022" @default.
- W4300508889 type Work @default.
- W4300508889 citedByCount "0" @default.
- W4300508889 crossrefType "proceedings-article" @default.
- W4300508889 hasAuthorship W4300508889A5021471823 @default.
- W4300508889 hasAuthorship W4300508889A5036503774 @default.
- W4300508889 hasAuthorship W4300508889A5065260102 @default.
- W4300508889 hasAuthorship W4300508889A5069777899 @default.
- W4300508889 hasAuthorship W4300508889A5089677763 @default.
- W4300508889 hasConcept C120665830 @default.
- W4300508889 hasConcept C121332964 @default.
- W4300508889 hasConcept C153180895 @default.
- W4300508889 hasConcept C154945302 @default.
- W4300508889 hasConcept C192562407 @default.
- W4300508889 hasConcept C196216189 @default.
- W4300508889 hasConcept C24890656 @default.
- W4300508889 hasConcept C2778280487 @default.
- W4300508889 hasConcept C41008148 @default.
- W4300508889 hasConcept C46286280 @default.
- W4300508889 hasConcept C47432892 @default.
- W4300508889 hasConcept C520434653 @default.
- W4300508889 hasConcept C81288441 @default.
- W4300508889 hasConcept C81363708 @default.
- W4300508889 hasConceptScore W4300508889C120665830 @default.
- W4300508889 hasConceptScore W4300508889C121332964 @default.
- W4300508889 hasConceptScore W4300508889C153180895 @default.
- W4300508889 hasConceptScore W4300508889C154945302 @default.
- W4300508889 hasConceptScore W4300508889C192562407 @default.
- W4300508889 hasConceptScore W4300508889C196216189 @default.
- W4300508889 hasConceptScore W4300508889C24890656 @default.
- W4300508889 hasConceptScore W4300508889C2778280487 @default.
- W4300508889 hasConceptScore W4300508889C41008148 @default.
- W4300508889 hasConceptScore W4300508889C46286280 @default.
- W4300508889 hasConceptScore W4300508889C47432892 @default.
- W4300508889 hasConceptScore W4300508889C520434653 @default.
- W4300508889 hasConceptScore W4300508889C81288441 @default.
- W4300508889 hasConceptScore W4300508889C81363708 @default.
- W4300508889 hasFunder F4320324174 @default.
- W4300508889 hasFunder F4320328720 @default.
- W4300508889 hasLocation W43005088891 @default.
- W4300508889 hasOpenAccess W4300508889 @default.
- W4300508889 hasPrimaryLocation W43005088891 @default.
- W4300508889 hasRelatedWork W2019547370 @default.
- W4300508889 hasRelatedWork W2047653910 @default.
- W4300508889 hasRelatedWork W2059017668 @default.
- W4300508889 hasRelatedWork W2175746458 @default.
- W4300508889 hasRelatedWork W2356584340 @default.
- W4300508889 hasRelatedWork W2541950815 @default.
- W4300508889 hasRelatedWork W2732542196 @default.
- W4300508889 hasRelatedWork W2804005492 @default.
- W4300508889 hasRelatedWork W3004053231 @default.
- W4300508889 hasRelatedWork W3093612317 @default.
- W4300508889 isParatext "false" @default.
- W4300508889 isRetracted "false" @default.
- W4300508889 workType "article" @default.