Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300517622> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4300517622 abstract "In recent years, algorithmic breakthroughs in stringology, computational social choice, scheduling, etc., were achieved by applying the theory of so-called $n$-fold integer programming. An $n$-fold integer program (IP) has a highly uniform block structured constraint matrix. Hemmecke, Onn, and Romanchuk [Math. Programming, 2013] showed an algorithm with runtime $a^{O(rst + r^2s)} n^3$, where $a$ is the largest coefficient, $r,s$, and $t$ are dimensions of blocks of the constraint matrix and $n$ is the total dimension of the IP; thus, an algorithm efficient if the blocks are of small size and with small coefficients. The algorithm works by iteratively improving a feasible solution with augmenting steps, and $n$-fold IPs have the special property that augmenting steps are guaranteed to exist in a not-too-large neighborhood. We have implemented the algorithm and learned the following along the way. The original algorithm is practically unusable, but we discover a series of improvements which make its evaluation possible. Crucially, we observe that a certain constant in the algorithm can be treated as a tuning parameter, which yields an efficient heuristic (essentially searching in a smaller-than-guaranteed neighborhood). Furthermore, the algorithm uses an overly expensive strategy to find a best step, while finding only an approximatelly best step is much cheaper, yet sufficient for quick convergence. Using this insight, we improve the asymptotic dependence on $n$ from $n^3$ to $n^2 log n$. We show that decreasing the tuning parameter initially leads to an increased number of iterations needed for convergence and eventually to getting stuck in local optima, as expected. However, surprisingly small values of the parameter already exhibit good behavior. Second, our new strategy for finding approximatelly best steps wildly outperforms the original construction." @default.
- W4300517622 created "2022-10-03" @default.
- W4300517622 creator A5026261798 @default.
- W4300517622 creator A5030598218 @default.
- W4300517622 creator A5073361240 @default.
- W4300517622 date "2018-02-25" @default.
- W4300517622 modified "2023-09-27" @default.
- W4300517622 title "Evaluating and Tuning n-fold Integer Programming" @default.
- W4300517622 doi "https://doi.org/10.4230/lipics.sea.2018.10" @default.
- W4300517622 hasPublicationYear "2018" @default.
- W4300517622 type Work @default.
- W4300517622 citedByCount "1" @default.
- W4300517622 countsByYear W43005176222019 @default.
- W4300517622 crossrefType "posted-content" @default.
- W4300517622 hasAuthorship W4300517622A5026261798 @default.
- W4300517622 hasAuthorship W4300517622A5030598218 @default.
- W4300517622 hasAuthorship W4300517622A5073361240 @default.
- W4300517622 hasBestOaLocation W43005176221 @default.
- W4300517622 hasConcept C11413529 @default.
- W4300517622 hasConcept C114614502 @default.
- W4300517622 hasConcept C126255220 @default.
- W4300517622 hasConcept C162324750 @default.
- W4300517622 hasConcept C173801870 @default.
- W4300517622 hasConcept C199360897 @default.
- W4300517622 hasConcept C206729178 @default.
- W4300517622 hasConcept C2777303404 @default.
- W4300517622 hasConcept C33676613 @default.
- W4300517622 hasConcept C33923547 @default.
- W4300517622 hasConcept C41008148 @default.
- W4300517622 hasConcept C50522688 @default.
- W4300517622 hasConcept C56086750 @default.
- W4300517622 hasConcept C97137487 @default.
- W4300517622 hasConceptScore W4300517622C11413529 @default.
- W4300517622 hasConceptScore W4300517622C114614502 @default.
- W4300517622 hasConceptScore W4300517622C126255220 @default.
- W4300517622 hasConceptScore W4300517622C162324750 @default.
- W4300517622 hasConceptScore W4300517622C173801870 @default.
- W4300517622 hasConceptScore W4300517622C199360897 @default.
- W4300517622 hasConceptScore W4300517622C206729178 @default.
- W4300517622 hasConceptScore W4300517622C2777303404 @default.
- W4300517622 hasConceptScore W4300517622C33676613 @default.
- W4300517622 hasConceptScore W4300517622C33923547 @default.
- W4300517622 hasConceptScore W4300517622C41008148 @default.
- W4300517622 hasConceptScore W4300517622C50522688 @default.
- W4300517622 hasConceptScore W4300517622C56086750 @default.
- W4300517622 hasConceptScore W4300517622C97137487 @default.
- W4300517622 hasLocation W43005176221 @default.
- W4300517622 hasLocation W43005176222 @default.
- W4300517622 hasLocation W43005176223 @default.
- W4300517622 hasOpenAccess W4300517622 @default.
- W4300517622 hasPrimaryLocation W43005176221 @default.
- W4300517622 hasRelatedWork W1967944787 @default.
- W4300517622 hasRelatedWork W1976440936 @default.
- W4300517622 hasRelatedWork W2016815536 @default.
- W4300517622 hasRelatedWork W2022632627 @default.
- W4300517622 hasRelatedWork W2158609391 @default.
- W4300517622 hasRelatedWork W2613898427 @default.
- W4300517622 hasRelatedWork W2953323856 @default.
- W4300517622 hasRelatedWork W3127504646 @default.
- W4300517622 hasRelatedWork W4297353597 @default.
- W4300517622 hasRelatedWork W4383860548 @default.
- W4300517622 isParatext "false" @default.
- W4300517622 isRetracted "false" @default.
- W4300517622 workType "article" @default.