Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300536294> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4300536294 endingPage "5" @default.
- W4300536294 startingPage "1" @default.
- W4300536294 abstract "Recently, the Internet of Things (IoT) systems have been widely used for earthquake detection because of the easy construction of a dense seismic network, communication capabilities, and low cost of sensors. However, when utilizing MEMS sensors as seismic sensors, earthquake detection capabilities are often affected by various types of noises because such sensors are installed in heterogeneous environments. In earthquakes, P-waves first arrive, but their lengths are only a few seconds, and their amplitudes are also relatively smaller than to S-waves. As a result, it is difficult to accurately detect P-waves in IoT systems where environmental noises are always present. Furthermore, when using deep learning approaches for earthquake detection, inference time usually becomes a critical factor for real-time processing because of the complex architecture of a detection model. To that end, in this letter, we present a deep learning model that can detect P-waves in noisy environments. The model outputs the detection probability before the arrival of strong shakes. We tested our model on earthquakes recorded by the IoT-based seismic sensors deployed in South Korea. Our model can detect P-waves within 1.5–2.5 s after the first arrival of P-wave with the accuracy of 98.8%, making it applicable in real-time earthquake detection." @default.
- W4300536294 created "2022-10-03" @default.
- W4300536294 creator A5037246393 @default.
- W4300536294 creator A5065601852 @default.
- W4300536294 date "2022-01-01" @default.
- W4300536294 modified "2023-10-16" @default.
- W4300536294 title "P-Detector: Real-Time P-Wave Detection in a Seismic Waveform Recorded on a Low-Cost MEMS Accelerometer Using Deep Learning" @default.
- W4300536294 cites W2050123244 @default.
- W4300536294 cites W2059204273 @default.
- W4300536294 cites W2064675550 @default.
- W4300536294 cites W2081424662 @default.
- W4300536294 cites W2272629573 @default.
- W4300536294 cites W2304245223 @default.
- W4300536294 cites W2346608065 @default.
- W4300536294 cites W2798961812 @default.
- W4300536294 cites W2895370056 @default.
- W4300536294 cites W2895546528 @default.
- W4300536294 cites W2922909036 @default.
- W4300536294 cites W2964336948 @default.
- W4300536294 cites W2980395728 @default.
- W4300536294 cites W2989717941 @default.
- W4300536294 cites W3003875633 @default.
- W4300536294 cites W3047855151 @default.
- W4300536294 cites W3102041920 @default.
- W4300536294 doi "https://doi.org/10.1109/lgrs.2022.3161017" @default.
- W4300536294 hasPublicationYear "2022" @default.
- W4300536294 type Work @default.
- W4300536294 citedByCount "8" @default.
- W4300536294 countsByYear W43005362942022 @default.
- W4300536294 countsByYear W43005362942023 @default.
- W4300536294 crossrefType "journal-article" @default.
- W4300536294 hasAuthorship W4300536294A5037246393 @default.
- W4300536294 hasAuthorship W4300536294A5065601852 @default.
- W4300536294 hasConcept C108583219 @default.
- W4300536294 hasConcept C111919701 @default.
- W4300536294 hasConcept C121332964 @default.
- W4300536294 hasConcept C127313418 @default.
- W4300536294 hasConcept C154945302 @default.
- W4300536294 hasConcept C165205528 @default.
- W4300536294 hasConcept C197424946 @default.
- W4300536294 hasConcept C24890656 @default.
- W4300536294 hasConcept C41008148 @default.
- W4300536294 hasConcept C554190296 @default.
- W4300536294 hasConcept C76155785 @default.
- W4300536294 hasConcept C78542244 @default.
- W4300536294 hasConcept C79403827 @default.
- W4300536294 hasConcept C89805583 @default.
- W4300536294 hasConcept C90626213 @default.
- W4300536294 hasConcept C94915269 @default.
- W4300536294 hasConceptScore W4300536294C108583219 @default.
- W4300536294 hasConceptScore W4300536294C111919701 @default.
- W4300536294 hasConceptScore W4300536294C121332964 @default.
- W4300536294 hasConceptScore W4300536294C127313418 @default.
- W4300536294 hasConceptScore W4300536294C154945302 @default.
- W4300536294 hasConceptScore W4300536294C165205528 @default.
- W4300536294 hasConceptScore W4300536294C197424946 @default.
- W4300536294 hasConceptScore W4300536294C24890656 @default.
- W4300536294 hasConceptScore W4300536294C41008148 @default.
- W4300536294 hasConceptScore W4300536294C554190296 @default.
- W4300536294 hasConceptScore W4300536294C76155785 @default.
- W4300536294 hasConceptScore W4300536294C78542244 @default.
- W4300536294 hasConceptScore W4300536294C79403827 @default.
- W4300536294 hasConceptScore W4300536294C89805583 @default.
- W4300536294 hasConceptScore W4300536294C90626213 @default.
- W4300536294 hasConceptScore W4300536294C94915269 @default.
- W4300536294 hasFunder F4320322120 @default.
- W4300536294 hasLocation W43005362941 @default.
- W4300536294 hasOpenAccess W4300536294 @default.
- W4300536294 hasPrimaryLocation W43005362941 @default.
- W4300536294 hasRelatedWork W1936283889 @default.
- W4300536294 hasRelatedWork W2044954890 @default.
- W4300536294 hasRelatedWork W2369299295 @default.
- W4300536294 hasRelatedWork W2379543190 @default.
- W4300536294 hasRelatedWork W2387958489 @default.
- W4300536294 hasRelatedWork W2587236244 @default.
- W4300536294 hasRelatedWork W2811407551 @default.
- W4300536294 hasRelatedWork W3032784826 @default.
- W4300536294 hasRelatedWork W4224209638 @default.
- W4300536294 hasRelatedWork W4225469488 @default.
- W4300536294 hasVolume "19" @default.
- W4300536294 isParatext "false" @default.
- W4300536294 isRetracted "false" @default.
- W4300536294 workType "article" @default.