Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300537458> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4300537458 abstract "Coding diagnosis and procedures in medical records is a crucial process in the healthcare industry, which includes the creation of accurate billings, receiving reimbursements from payers, and creating standardized patient care records. In the United States, Billing and Insurance related activities cost around $471 billion in 2012 which constitutes about 25% of all the U.S hospital spending. In this paper, we report the performance of a natural language processing model that can map clinical notes to medical codes, and predict final diagnosis from unstructured entries of history of present illness, symptoms at the time of admission, etc. Previous studies have demonstrated that deep learning models perform better at such mapping when compared to conventional machine learning models. Therefore, we employed state-of-the-art deep learning method, ULMFiT on the largest emergency department clinical notes dataset MIMIC III which has 1.2M clinical notes to select for the top-10 and top-50 diagnosis and procedure codes. Our models were able to predict the top-10 diagnoses and procedures with 80.3% and 80.5% accuracy, whereas the top-50 ICD-9 codes of diagnosis and procedures are predicted with 70.7% and 63.9% accuracy. Prediction of diagnosis and procedures from unstructured clinical notes benefit human coders to save time, eliminate errors and minimize costs. With promising scores from our present model, the next step would be to deploy this on a small-scale real-world scenario and compare it with human coders as the gold standard. We believe that further research of this approach can create highly accurate predictions that can ease the workflow in a clinical setting." @default.
- W4300537458 created "2022-10-03" @default.
- W4300537458 creator A5008119897 @default.
- W4300537458 creator A5057135002 @default.
- W4300537458 creator A5075722115 @default.
- W4300537458 creator A5076075666 @default.
- W4300537458 date "2019-12-27" @default.
- W4300537458 modified "2023-09-26" @default.
- W4300537458 title "Natural language processing of MIMIC-III clinical notes for identifying diagnosis and procedures with neural networks" @default.
- W4300537458 doi "https://doi.org/10.48550/arxiv.1912.12397" @default.
- W4300537458 hasPublicationYear "2019" @default.
- W4300537458 type Work @default.
- W4300537458 citedByCount "0" @default.
- W4300537458 crossrefType "posted-content" @default.
- W4300537458 hasAuthorship W4300537458A5008119897 @default.
- W4300537458 hasAuthorship W4300537458A5057135002 @default.
- W4300537458 hasAuthorship W4300537458A5075722115 @default.
- W4300537458 hasAuthorship W4300537458A5076075666 @default.
- W4300537458 hasBestOaLocation W43005374581 @default.
- W4300537458 hasConcept C105795698 @default.
- W4300537458 hasConcept C108583219 @default.
- W4300537458 hasConcept C111919701 @default.
- W4300537458 hasConcept C118552586 @default.
- W4300537458 hasConcept C119857082 @default.
- W4300537458 hasConcept C126322002 @default.
- W4300537458 hasConcept C126838900 @default.
- W4300537458 hasConcept C142724271 @default.
- W4300537458 hasConcept C154945302 @default.
- W4300537458 hasConcept C179518139 @default.
- W4300537458 hasConcept C195910791 @default.
- W4300537458 hasConcept C2780724011 @default.
- W4300537458 hasConcept C2908647359 @default.
- W4300537458 hasConcept C33923547 @default.
- W4300537458 hasConcept C40993552 @default.
- W4300537458 hasConcept C41008148 @default.
- W4300537458 hasConcept C45827449 @default.
- W4300537458 hasConcept C50644808 @default.
- W4300537458 hasConcept C534262118 @default.
- W4300537458 hasConcept C545542383 @default.
- W4300537458 hasConcept C71924100 @default.
- W4300537458 hasConcept C98045186 @default.
- W4300537458 hasConcept C99454951 @default.
- W4300537458 hasConceptScore W4300537458C105795698 @default.
- W4300537458 hasConceptScore W4300537458C108583219 @default.
- W4300537458 hasConceptScore W4300537458C111919701 @default.
- W4300537458 hasConceptScore W4300537458C118552586 @default.
- W4300537458 hasConceptScore W4300537458C119857082 @default.
- W4300537458 hasConceptScore W4300537458C126322002 @default.
- W4300537458 hasConceptScore W4300537458C126838900 @default.
- W4300537458 hasConceptScore W4300537458C142724271 @default.
- W4300537458 hasConceptScore W4300537458C154945302 @default.
- W4300537458 hasConceptScore W4300537458C179518139 @default.
- W4300537458 hasConceptScore W4300537458C195910791 @default.
- W4300537458 hasConceptScore W4300537458C2780724011 @default.
- W4300537458 hasConceptScore W4300537458C2908647359 @default.
- W4300537458 hasConceptScore W4300537458C33923547 @default.
- W4300537458 hasConceptScore W4300537458C40993552 @default.
- W4300537458 hasConceptScore W4300537458C41008148 @default.
- W4300537458 hasConceptScore W4300537458C45827449 @default.
- W4300537458 hasConceptScore W4300537458C50644808 @default.
- W4300537458 hasConceptScore W4300537458C534262118 @default.
- W4300537458 hasConceptScore W4300537458C545542383 @default.
- W4300537458 hasConceptScore W4300537458C71924100 @default.
- W4300537458 hasConceptScore W4300537458C98045186 @default.
- W4300537458 hasConceptScore W4300537458C99454951 @default.
- W4300537458 hasLocation W43005374581 @default.
- W4300537458 hasOpenAccess W4300537458 @default.
- W4300537458 hasPrimaryLocation W43005374581 @default.
- W4300537458 hasRelatedWork W1997732285 @default.
- W4300537458 hasRelatedWork W2104333617 @default.
- W4300537458 hasRelatedWork W2169097752 @default.
- W4300537458 hasRelatedWork W2407534863 @default.
- W4300537458 hasRelatedWork W2414148986 @default.
- W4300537458 hasRelatedWork W2627472963 @default.
- W4300537458 hasRelatedWork W3149417056 @default.
- W4300537458 hasRelatedWork W4249099117 @default.
- W4300537458 hasRelatedWork W4309637067 @default.
- W4300537458 hasRelatedWork W72816711 @default.
- W4300537458 isParatext "false" @default.
- W4300537458 isRetracted "false" @default.
- W4300537458 workType "article" @default.