Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300541639> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4300541639 abstract "We study the ideals of the partition, Brauer, and Jones monoid, establishing various combinatorial results on generating sets and idempotent generating sets via an analysis of their Graham--Houghton graphs. We show that each proper ideal of the partition monoid P_n is an idempotent generated semigroup, and obtain a formula for the minimal number of elements (and the minimal number of idempotent elements) needed to generate these semigroups. In particular, we show that these two numbers, which are called the rank and idempotent rank (respectively) of the semigroup, are equal to each other, and we characterize the generating sets of this minimal cardinality. We also characterize and enumerate the minimal idempotent generating sets for the largest proper ideal of P_n, which coincides with the singular part of P_n. Analogous results are proved for the ideals of the Brauer and Jones monoids; in each case, the rank and idempotent rank turn out to be equal, and all the minimal generating sets are described. We also show how the rank and idempotent rank results obtained, when applied to the corresponding twisted semigroup algebras (the partition, Brauer, and Temperley--Lieb algebras), allow one to recover formulae for the dimensions of their cell modules (viewed as cellular algebras) which, in the semisimple case, are formulae for the dimensions of the irreducible representations of the algebras. As well as being of algebraic interest, our results relate to several well-studied topics in graph theory including the problem of counting perfect matchings (which relates to the problem of computing permanents of {0,1}-matrices and the theory of Pfaffian orientations), and the problem of finding factorizations of Johnson graphs. Our results also bring together several well-known number sequences such as Stirling, Bell, Catalan and Fibonacci numbers." @default.
- W4300541639 created "2022-10-03" @default.
- W4300541639 creator A5061042317 @default.
- W4300541639 creator A5090352318 @default.
- W4300541639 date "2014-04-08" @default.
- W4300541639 modified "2023-09-30" @default.
- W4300541639 title "Diagram monoids and Graham-Houghton graphs: idempotents and generating sets of ideals" @default.
- W4300541639 doi "https://doi.org/10.48550/arxiv.1404.2359" @default.
- W4300541639 hasPublicationYear "2014" @default.
- W4300541639 type Work @default.
- W4300541639 citedByCount "0" @default.
- W4300541639 crossrefType "posted-content" @default.
- W4300541639 hasAuthorship W4300541639A5061042317 @default.
- W4300541639 hasAuthorship W4300541639A5090352318 @default.
- W4300541639 hasBestOaLocation W43005416391 @default.
- W4300541639 hasConcept C111472728 @default.
- W4300541639 hasConcept C114614502 @default.
- W4300541639 hasConcept C118615104 @default.
- W4300541639 hasConcept C134306372 @default.
- W4300541639 hasConcept C138885662 @default.
- W4300541639 hasConcept C164226766 @default.
- W4300541639 hasConcept C172252984 @default.
- W4300541639 hasConcept C202444582 @default.
- W4300541639 hasConcept C206901836 @default.
- W4300541639 hasConcept C207405024 @default.
- W4300541639 hasConcept C2776639384 @default.
- W4300541639 hasConcept C33375987 @default.
- W4300541639 hasConcept C33923547 @default.
- W4300541639 hasConcept C42812 @default.
- W4300541639 hasConcept C9376300 @default.
- W4300541639 hasConceptScore W4300541639C111472728 @default.
- W4300541639 hasConceptScore W4300541639C114614502 @default.
- W4300541639 hasConceptScore W4300541639C118615104 @default.
- W4300541639 hasConceptScore W4300541639C134306372 @default.
- W4300541639 hasConceptScore W4300541639C138885662 @default.
- W4300541639 hasConceptScore W4300541639C164226766 @default.
- W4300541639 hasConceptScore W4300541639C172252984 @default.
- W4300541639 hasConceptScore W4300541639C202444582 @default.
- W4300541639 hasConceptScore W4300541639C206901836 @default.
- W4300541639 hasConceptScore W4300541639C207405024 @default.
- W4300541639 hasConceptScore W4300541639C2776639384 @default.
- W4300541639 hasConceptScore W4300541639C33375987 @default.
- W4300541639 hasConceptScore W4300541639C33923547 @default.
- W4300541639 hasConceptScore W4300541639C42812 @default.
- W4300541639 hasConceptScore W4300541639C9376300 @default.
- W4300541639 hasLocation W43005416391 @default.
- W4300541639 hasLocation W43005416392 @default.
- W4300541639 hasOpenAccess W4300541639 @default.
- W4300541639 hasPrimaryLocation W43005416391 @default.
- W4300541639 hasRelatedWork W2016678459 @default.
- W4300541639 hasRelatedWork W2030463542 @default.
- W4300541639 hasRelatedWork W2031004667 @default.
- W4300541639 hasRelatedWork W2125853847 @default.
- W4300541639 hasRelatedWork W2277591072 @default.
- W4300541639 hasRelatedWork W2387019100 @default.
- W4300541639 hasRelatedWork W2564120157 @default.
- W4300541639 hasRelatedWork W2757718484 @default.
- W4300541639 hasRelatedWork W2962781288 @default.
- W4300541639 hasRelatedWork W3098379097 @default.
- W4300541639 isParatext "false" @default.
- W4300541639 isRetracted "false" @default.
- W4300541639 workType "article" @default.