Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300571471> ?p ?o ?g. }
- W4300571471 endingPage "2464" @default.
- W4300571471 startingPage "2464" @default.
- W4300571471 abstract "The Danjiangkou hydropower station is a water source project for the middle line of the South-to-North Water Transfer Project in China. The dam is composed of riverbed concrete dam and earth rock dam on both banks, with a total length of 3442 m. Once the dam is wrecked, it will yield disastrous consequences. Therefore, it is very important to evaluate the dam safety behavior in time. Based on the long-term and short-term memory (LSTM) network, the deformation prediction models of the embankment dam of the Danjiangkou hydropower station are constructed. The models contain two LSTM layers, adopt the rectified linear unit function as the activation function and determine the super parameters of the models with Bayesian optimization algorithm. According to the settlement monitoring data of LD12ZT01 measuring point (dam crest 0 + 648) on the left bank of the embankment dam of the Danjiangkou hydropower station from July 2013 to March 2022, the LSTM and bidirectional LSTM models are constructed. In total, 80% of the monitoring data are taken as the training set data and 20% of the monitoring data are taken as the test set data. The mean absolute error, root mean square error and mean square error for the test set are 0.42978, 0.56456 and 0.31873 for partial least squares regression (PLSR), 0.35264, 0.47561 and 0.22621 for LSTM and 0.34418, 0.45400 and 0.20612 for bidirectional LSTM, respectively. The results show that the bidirectional LSTM model can obtain better deformation prediction value than the LSTM model and the PLSR. Then, the bidirectional LSTM model is used to predict the settlement value of LD16YT01 measuring point (dam crest 0 + 658) on the right bank, and the mean absolute error, root mean square error and mean square error for the test set are 0.5425, 0.66971 and 0.4520, respectively. This shows the bidirectional LSTM model can effectively predict the settlement value of the embankment dam of the Danjiangkou hydropower station." @default.
- W4300571471 created "2022-10-03" @default.
- W4300571471 creator A5005592510 @default.
- W4300571471 creator A5023393797 @default.
- W4300571471 creator A5035541289 @default.
- W4300571471 creator A5049694601 @default.
- W4300571471 creator A5058190373 @default.
- W4300571471 date "2022-08-09" @default.
- W4300571471 modified "2023-10-13" @default.
- W4300571471 title "LSTM-Based Deformation Prediction Model of the Embankment Dam of the Danjiangkou Hydropower Station" @default.
- W4300571471 cites W1503596152 @default.
- W4300571471 cites W1586402167 @default.
- W4300571471 cites W1993852247 @default.
- W4300571471 cites W2064675550 @default.
- W4300571471 cites W2079735306 @default.
- W4300571471 cites W2154281509 @default.
- W4300571471 cites W2339567360 @default.
- W4300571471 cites W2619275967 @default.
- W4300571471 cites W2794144368 @default.
- W4300571471 cites W2794666208 @default.
- W4300571471 cites W2810412619 @default.
- W4300571471 cites W2889170135 @default.
- W4300571471 cites W2903063401 @default.
- W4300571471 cites W2905251331 @default.
- W4300571471 cites W2932960505 @default.
- W4300571471 cites W2982450503 @default.
- W4300571471 cites W3000503970 @default.
- W4300571471 cites W3010847666 @default.
- W4300571471 cites W3011530571 @default.
- W4300571471 cites W3084624232 @default.
- W4300571471 cites W3112339060 @default.
- W4300571471 cites W3115044086 @default.
- W4300571471 cites W3149364118 @default.
- W4300571471 cites W3158774913 @default.
- W4300571471 cites W3176056978 @default.
- W4300571471 cites W3189472582 @default.
- W4300571471 cites W3191476701 @default.
- W4300571471 cites W3198497538 @default.
- W4300571471 cites W3204721581 @default.
- W4300571471 cites W4206930888 @default.
- W4300571471 cites W4212789048 @default.
- W4300571471 cites W4213289853 @default.
- W4300571471 cites W4220732966 @default.
- W4300571471 doi "https://doi.org/10.3390/w14162464" @default.
- W4300571471 hasPublicationYear "2022" @default.
- W4300571471 type Work @default.
- W4300571471 citedByCount "6" @default.
- W4300571471 countsByYear W43005714712022 @default.
- W4300571471 countsByYear W43005714712023 @default.
- W4300571471 crossrefType "journal-article" @default.
- W4300571471 hasAuthorship W4300571471A5005592510 @default.
- W4300571471 hasAuthorship W4300571471A5023393797 @default.
- W4300571471 hasAuthorship W4300571471A5035541289 @default.
- W4300571471 hasAuthorship W4300571471A5049694601 @default.
- W4300571471 hasAuthorship W4300571471A5058190373 @default.
- W4300571471 hasBestOaLocation W43005714711 @default.
- W4300571471 hasConcept C105795698 @default.
- W4300571471 hasConcept C111368507 @default.
- W4300571471 hasConcept C115038398 @default.
- W4300571471 hasConcept C119599485 @default.
- W4300571471 hasConcept C127313418 @default.
- W4300571471 hasConcept C127413603 @default.
- W4300571471 hasConcept C1284942 @default.
- W4300571471 hasConcept C136428324 @default.
- W4300571471 hasConcept C139945424 @default.
- W4300571471 hasConcept C16910744 @default.
- W4300571471 hasConcept C187320778 @default.
- W4300571471 hasConcept C199360897 @default.
- W4300571471 hasConcept C204366326 @default.
- W4300571471 hasConcept C205649164 @default.
- W4300571471 hasConcept C2780230596 @default.
- W4300571471 hasConcept C33923547 @default.
- W4300571471 hasConcept C40675005 @default.
- W4300571471 hasConcept C41008148 @default.
- W4300571471 hasConcept C58640448 @default.
- W4300571471 hasConcept C76886044 @default.
- W4300571471 hasConceptScore W4300571471C105795698 @default.
- W4300571471 hasConceptScore W4300571471C111368507 @default.
- W4300571471 hasConceptScore W4300571471C115038398 @default.
- W4300571471 hasConceptScore W4300571471C119599485 @default.
- W4300571471 hasConceptScore W4300571471C127313418 @default.
- W4300571471 hasConceptScore W4300571471C127413603 @default.
- W4300571471 hasConceptScore W4300571471C1284942 @default.
- W4300571471 hasConceptScore W4300571471C136428324 @default.
- W4300571471 hasConceptScore W4300571471C139945424 @default.
- W4300571471 hasConceptScore W4300571471C16910744 @default.
- W4300571471 hasConceptScore W4300571471C187320778 @default.
- W4300571471 hasConceptScore W4300571471C199360897 @default.
- W4300571471 hasConceptScore W4300571471C204366326 @default.
- W4300571471 hasConceptScore W4300571471C205649164 @default.
- W4300571471 hasConceptScore W4300571471C2780230596 @default.
- W4300571471 hasConceptScore W4300571471C33923547 @default.
- W4300571471 hasConceptScore W4300571471C40675005 @default.
- W4300571471 hasConceptScore W4300571471C41008148 @default.
- W4300571471 hasConceptScore W4300571471C58640448 @default.
- W4300571471 hasConceptScore W4300571471C76886044 @default.
- W4300571471 hasIssue "16" @default.
- W4300571471 hasLocation W43005714711 @default.