Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300642998> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4300642998 abstract "A smooth complex projective curve is called pseudoreal if it is isomorphic to its conjugate but is not definable over the reals. Such curves, together with real Riemann surfaces, form the real locus of the moduli space $mathcal M_g$. This paper deals with the classification of pseudoreal curves according to the structure of their automorphism group. We follow two different approaches existing in the literature: one coming from number theory, dealing more generally with fields of moduli of projective curves, and the other from complex geometry, through the theory of NEC groups. Using the first approach, we prove that the automorphism group of a pseudoreal Riemann surface $X$ is abelian if $X/Z({rm Aut}(X))$ has genus zero, where $Z({rm Aut}(X))$ is the center of ${rm Aut}(X)$. This includes the case of $p$-gonal Riemann surfaces, already known by results of Huggins and Kontogeorgis. By means of the second approach and of elementary properties of group extensions, we show that $X$ is not pseudoreal if the center of $G={rm Aut}(X)$ is trivial and either ${rm Out}(G)$ contains no involutions or ${rm Inn}(G)$ has a group complement in ${rm Aut}(G)$. This extends and gives an elementary proof (over $mathbb C$) of a result by D`ebes and Emsalem. Finally, we provide an algorithm, implemented in MAGMA, which classifies the automorphism groups of pseudoreal Riemann surfaces of genus $ggeq 2$, once a list of all groups acting for such genus, with their signature and generating vectors, are given. This program, together with the database provided by J. Paulhus in cite{Pau15}, allowed us to classifiy pseudoreal Riemann surfaces up to genus $10$, extending previous results by Bujalance, Conder and Costa." @default.
- W4300642998 created "2022-10-03" @default.
- W4300642998 creator A5042986518 @default.
- W4300642998 creator A5064524126 @default.
- W4300642998 creator A5072787722 @default.
- W4300642998 date "2016-12-20" @default.
- W4300642998 modified "2023-10-18" @default.
- W4300642998 title "Automorphism groups of pseudoreal Riemann surfaces" @default.
- W4300642998 doi "https://doi.org/10.48550/arxiv.1612.06810" @default.
- W4300642998 hasPublicationYear "2016" @default.
- W4300642998 type Work @default.
- W4300642998 citedByCount "0" @default.
- W4300642998 crossrefType "posted-content" @default.
- W4300642998 hasAuthorship W4300642998A5042986518 @default.
- W4300642998 hasAuthorship W4300642998A5064524126 @default.
- W4300642998 hasAuthorship W4300642998A5072787722 @default.
- W4300642998 hasBestOaLocation W43006429981 @default.
- W4300642998 hasConcept C112468886 @default.
- W4300642998 hasConcept C114614502 @default.
- W4300642998 hasConcept C118712358 @default.
- W4300642998 hasConcept C121332964 @default.
- W4300642998 hasConcept C131356121 @default.
- W4300642998 hasConcept C136170076 @default.
- W4300642998 hasConcept C157369684 @default.
- W4300642998 hasConcept C18556879 @default.
- W4300642998 hasConcept C185592680 @default.
- W4300642998 hasConcept C202444582 @default.
- W4300642998 hasConcept C2779463800 @default.
- W4300642998 hasConcept C2781311116 @default.
- W4300642998 hasConcept C33923547 @default.
- W4300642998 hasConcept C59822182 @default.
- W4300642998 hasConcept C62520636 @default.
- W4300642998 hasConcept C73373263 @default.
- W4300642998 hasConcept C8010536 @default.
- W4300642998 hasConcept C86803240 @default.
- W4300642998 hasConceptScore W4300642998C112468886 @default.
- W4300642998 hasConceptScore W4300642998C114614502 @default.
- W4300642998 hasConceptScore W4300642998C118712358 @default.
- W4300642998 hasConceptScore W4300642998C121332964 @default.
- W4300642998 hasConceptScore W4300642998C131356121 @default.
- W4300642998 hasConceptScore W4300642998C136170076 @default.
- W4300642998 hasConceptScore W4300642998C157369684 @default.
- W4300642998 hasConceptScore W4300642998C18556879 @default.
- W4300642998 hasConceptScore W4300642998C185592680 @default.
- W4300642998 hasConceptScore W4300642998C202444582 @default.
- W4300642998 hasConceptScore W4300642998C2779463800 @default.
- W4300642998 hasConceptScore W4300642998C2781311116 @default.
- W4300642998 hasConceptScore W4300642998C33923547 @default.
- W4300642998 hasConceptScore W4300642998C59822182 @default.
- W4300642998 hasConceptScore W4300642998C62520636 @default.
- W4300642998 hasConceptScore W4300642998C73373263 @default.
- W4300642998 hasConceptScore W4300642998C8010536 @default.
- W4300642998 hasConceptScore W4300642998C86803240 @default.
- W4300642998 hasLocation W43006429981 @default.
- W4300642998 hasLocation W43006429982 @default.
- W4300642998 hasOpenAccess W4300642998 @default.
- W4300642998 hasPrimaryLocation W43006429981 @default.
- W4300642998 hasRelatedWork W2135148858 @default.
- W4300642998 hasRelatedWork W2146456297 @default.
- W4300642998 hasRelatedWork W2341916174 @default.
- W4300642998 hasRelatedWork W2787946809 @default.
- W4300642998 hasRelatedWork W2962853896 @default.
- W4300642998 hasRelatedWork W3126773016 @default.
- W4300642998 hasRelatedWork W4232265963 @default.
- W4300642998 hasRelatedWork W4244465134 @default.
- W4300642998 hasRelatedWork W4288025184 @default.
- W4300642998 hasRelatedWork W638856989 @default.
- W4300642998 isParatext "false" @default.
- W4300642998 isRetracted "false" @default.
- W4300642998 workType "article" @default.