Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300687494> ?p ?o ?g. }
- W4300687494 endingPage "329" @default.
- W4300687494 startingPage "319" @default.
- W4300687494 abstract "Autosegmentation of gross tumor volumes holds promise to decrease clinical demand and to provide consistency across clinicians and institutions for radiation treatment planning. Additionally, autosegmentation can enable imaging analyses such as radiomics to construct and deploy large studies with thousands of patients. Here, we review modern results that utilize deep learning approaches to segment tumors in 5 major clinical sites: brain, head and neck, thorax, abdomen, and pelvis. We focus on approaches that inch closer to clinical adoption, highlighting winning entries in international competitions, unique network architectures, and novel ways of overcoming specific challenges. We also broadly discuss the future of gross tumor volumes autosegmentation and the remaining barriers that must be overcome before widespread replacement or augmentation of manual contouring." @default.
- W4300687494 created "2022-10-04" @default.
- W4300687494 creator A5007157109 @default.
- W4300687494 creator A5012858566 @default.
- W4300687494 creator A5040450297 @default.
- W4300687494 creator A5054723467 @default.
- W4300687494 creator A5058377953 @default.
- W4300687494 creator A5083635904 @default.
- W4300687494 date "2022-10-01" @default.
- W4300687494 modified "2023-10-16" @default.
- W4300687494 title "Automated Tumor Segmentation in Radiotherapy" @default.
- W4300687494 cites W2175951243 @default.
- W4300687494 cites W2557406251 @default.
- W4300687494 cites W2608353599 @default.
- W4300687494 cites W2795420264 @default.
- W4300687494 cites W2883311907 @default.
- W4300687494 cites W2896844611 @default.
- W4300687494 cites W2902972155 @default.
- W4300687494 cites W2907576408 @default.
- W4300687494 cites W2921887739 @default.
- W4300687494 cites W2952378269 @default.
- W4300687494 cites W2962858109 @default.
- W4300687494 cites W2962914239 @default.
- W4300687494 cites W2963446989 @default.
- W4300687494 cites W2978442853 @default.
- W4300687494 cites W2982236625 @default.
- W4300687494 cites W2982440944 @default.
- W4300687494 cites W2989665484 @default.
- W4300687494 cites W2995515529 @default.
- W4300687494 cites W3005060603 @default.
- W4300687494 cites W3010749409 @default.
- W4300687494 cites W3011245295 @default.
- W4300687494 cites W3012312660 @default.
- W4300687494 cites W3012636247 @default.
- W4300687494 cites W3021686348 @default.
- W4300687494 cites W3033944192 @default.
- W4300687494 cites W3035470482 @default.
- W4300687494 cites W3038065749 @default.
- W4300687494 cites W3046015102 @default.
- W4300687494 cites W3046149263 @default.
- W4300687494 cites W3049459429 @default.
- W4300687494 cites W3085137128 @default.
- W4300687494 cites W3090460762 @default.
- W4300687494 cites W3090605478 @default.
- W4300687494 cites W3092818728 @default.
- W4300687494 cites W3096907567 @default.
- W4300687494 cites W3102960860 @default.
- W4300687494 cites W3104028516 @default.
- W4300687494 cites W3106713416 @default.
- W4300687494 cites W3118463796 @default.
- W4300687494 cites W3123982987 @default.
- W4300687494 cites W3127671756 @default.
- W4300687494 cites W3131126012 @default.
- W4300687494 cites W3131175575 @default.
- W4300687494 cites W3131280251 @default.
- W4300687494 cites W3133737152 @default.
- W4300687494 cites W3135293111 @default.
- W4300687494 cites W3135768682 @default.
- W4300687494 cites W3136424010 @default.
- W4300687494 cites W3136933888 @default.
- W4300687494 cites W3137474587 @default.
- W4300687494 cites W3142164167 @default.
- W4300687494 cites W3156491764 @default.
- W4300687494 cites W3159396227 @default.
- W4300687494 cites W3160604201 @default.
- W4300687494 cites W3161611093 @default.
- W4300687494 cites W3162979268 @default.
- W4300687494 cites W3164573547 @default.
- W4300687494 cites W3168061551 @default.
- W4300687494 cites W3169638230 @default.
- W4300687494 cites W3176861478 @default.
- W4300687494 cites W3179097742 @default.
- W4300687494 cites W3179384107 @default.
- W4300687494 cites W3183338453 @default.
- W4300687494 cites W3184930236 @default.
- W4300687494 cites W3190677007 @default.
- W4300687494 cites W3194599467 @default.
- W4300687494 cites W3195583016 @default.
- W4300687494 cites W3200676672 @default.
- W4300687494 cites W3202023533 @default.
- W4300687494 cites W3203713163 @default.
- W4300687494 cites W3205007314 @default.
- W4300687494 cites W3205280935 @default.
- W4300687494 cites W3206545344 @default.
- W4300687494 cites W3208162305 @default.
- W4300687494 doi "https://doi.org/10.1016/j.semradonc.2022.06.002" @default.
- W4300687494 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36202435" @default.
- W4300687494 hasPublicationYear "2022" @default.
- W4300687494 type Work @default.
- W4300687494 citedByCount "10" @default.
- W4300687494 countsByYear W43006874942022 @default.
- W4300687494 countsByYear W43006874942023 @default.
- W4300687494 crossrefType "journal-article" @default.
- W4300687494 hasAuthorship W4300687494A5007157109 @default.
- W4300687494 hasAuthorship W4300687494A5012858566 @default.
- W4300687494 hasAuthorship W4300687494A5040450297 @default.
- W4300687494 hasAuthorship W4300687494A5054723467 @default.
- W4300687494 hasAuthorship W4300687494A5058377953 @default.