Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300687600> ?p ?o ?g. }
- W4300687600 endingPage "399" @default.
- W4300687600 startingPage "389" @default.
- W4300687600 abstract "In recent years, Artificial intelligence (AI), specifically deep-learning (DL) based methods, have been employed extensively to solve various problems in brachytherapy. This paper presents a comprehensive literature review on recent developments and applications of AI/DL technologies for different areas in brachytherapy, including image enhancement, registration, segmentation, treatment planning, quality assurance, outcome prediction, etc. The review will emphasize studies addressing unique challenges in brachytherapy, as compared to external beam radiotherapy. Meanwhile, despite exciting achievements, it is also noted that we are still at the early stage of employing AI/DL-technologies to enhance brachytherapy clinical practice. Hence, this paper will also present challenges and future directions. We hope this review will inspire discussions on this topic and trigger future impactful studies to transform technology advancements into healthcare benefits." @default.
- W4300687600 created "2022-10-04" @default.
- W4300687600 creator A5018149949 @default.
- W4300687600 creator A5066232843 @default.
- W4300687600 date "2022-10-01" @default.
- W4300687600 modified "2023-09-29" @default.
- W4300687600 title "Artificial Intelligence and Deep Learning for Brachytherapy" @default.
- W4300687600 cites W2083859139 @default.
- W4300687600 cites W2096624388 @default.
- W4300687600 cites W2146816131 @default.
- W4300687600 cites W2469513194 @default.
- W4300687600 cites W2549153175 @default.
- W4300687600 cites W2594600577 @default.
- W4300687600 cites W2753044865 @default.
- W4300687600 cites W2756456050 @default.
- W4300687600 cites W2766447205 @default.
- W4300687600 cites W2799460839 @default.
- W4300687600 cites W2811337763 @default.
- W4300687600 cites W2892087048 @default.
- W4300687600 cites W2898197178 @default.
- W4300687600 cites W2898662037 @default.
- W4300687600 cites W2902232758 @default.
- W4300687600 cites W2911290743 @default.
- W4300687600 cites W2913945764 @default.
- W4300687600 cites W2919115771 @default.
- W4300687600 cites W2944109339 @default.
- W4300687600 cites W2946153601 @default.
- W4300687600 cites W2954191198 @default.
- W4300687600 cites W2963397681 @default.
- W4300687600 cites W2963864749 @default.
- W4300687600 cites W2964248288 @default.
- W4300687600 cites W2964779348 @default.
- W4300687600 cites W2970011722 @default.
- W4300687600 cites W2970437588 @default.
- W4300687600 cites W2975898082 @default.
- W4300687600 cites W2982612985 @default.
- W4300687600 cites W2995614736 @default.
- W4300687600 cites W3000734720 @default.
- W4300687600 cites W3011143832 @default.
- W4300687600 cites W3012097287 @default.
- W4300687600 cites W3017224233 @default.
- W4300687600 cites W3018159726 @default.
- W4300687600 cites W3025592469 @default.
- W4300687600 cites W3030883634 @default.
- W4300687600 cites W3034744764 @default.
- W4300687600 cites W3041671377 @default.
- W4300687600 cites W3044145413 @default.
- W4300687600 cites W3048331484 @default.
- W4300687600 cites W3049159980 @default.
- W4300687600 cites W3089452536 @default.
- W4300687600 cites W3092810270 @default.
- W4300687600 cites W3096584968 @default.
- W4300687600 cites W3098020164 @default.
- W4300687600 cites W3107948792 @default.
- W4300687600 cites W3112667527 @default.
- W4300687600 cites W3139826151 @default.
- W4300687600 cites W3145351892 @default.
- W4300687600 cites W3158347522 @default.
- W4300687600 cites W3159145900 @default.
- W4300687600 cites W3162979268 @default.
- W4300687600 cites W3169821045 @default.
- W4300687600 cites W3191774858 @default.
- W4300687600 cites W3197087278 @default.
- W4300687600 cites W3204920386 @default.
- W4300687600 cites W3212796795 @default.
- W4300687600 cites W3217631704 @default.
- W4300687600 cites W4200596566 @default.
- W4300687600 cites W4210372882 @default.
- W4300687600 cites W4210427846 @default.
- W4300687600 cites W4210594465 @default.
- W4300687600 cites W4214903080 @default.
- W4300687600 doi "https://doi.org/10.1016/j.semradonc.2022.06.008" @default.
- W4300687600 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36202441" @default.
- W4300687600 hasPublicationYear "2022" @default.
- W4300687600 type Work @default.
- W4300687600 citedByCount "1" @default.
- W4300687600 countsByYear W43006876002022 @default.
- W4300687600 crossrefType "journal-article" @default.
- W4300687600 hasAuthorship W4300687600A5018149949 @default.
- W4300687600 hasAuthorship W4300687600A5066232843 @default.
- W4300687600 hasConcept C106436119 @default.
- W4300687600 hasConcept C108583219 @default.
- W4300687600 hasConcept C126838900 @default.
- W4300687600 hasConcept C142724271 @default.
- W4300687600 hasConcept C154945302 @default.
- W4300687600 hasConcept C157170001 @default.
- W4300687600 hasConcept C19527891 @default.
- W4300687600 hasConcept C2777416452 @default.
- W4300687600 hasConcept C2778618615 @default.
- W4300687600 hasConcept C41008148 @default.
- W4300687600 hasConcept C509974204 @default.
- W4300687600 hasConcept C71924100 @default.
- W4300687600 hasConceptScore W4300687600C106436119 @default.
- W4300687600 hasConceptScore W4300687600C108583219 @default.
- W4300687600 hasConceptScore W4300687600C126838900 @default.
- W4300687600 hasConceptScore W4300687600C142724271 @default.
- W4300687600 hasConceptScore W4300687600C154945302 @default.
- W4300687600 hasConceptScore W4300687600C157170001 @default.