Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300688567> ?p ?o ?g. }
- W4300688567 endingPage "229" @default.
- W4300688567 startingPage "216" @default.
- W4300688567 abstract "Over the last two decades, model-based metabolic pathway optimization tools have been developed for the design of microorganisms to produce desired metabolites. However, few have considered more complex cellular systems such as mammalian cells, which requires the use of nonlinear kinetic models to capture the effects of concentration changes and cross-regulatory interactions. In this study, we develop a new two-stage pathway optimization framework based on kinetic models that incorporate detailed kinetics and regulation information. In Stage 1, a set of optimization problems are solved to identify and rank the enzymes that contribute the most to achieving the metabolic objective. Stage 2 then determines the optimal enzyme interventions for specified desired numbers of enzyme adjustments. It also incorporates multi-scenario optimization, which allows the simultaneous consideration of multiple physiological conditions. We apply the proposed framework to find enzyme adjustments that enable a reverse glucose flow in cultured mammalian cells, thereby eliminating the need for glucose feed in the late culture stage and enhancing process robustness. The computational results demonstrate the efficacy of the proposed approach; it not only captures the important regulations and key enzymes for reverse glycolysis but also identifies differences and commonalities in the metabolic requirements for different carbon sources." @default.
- W4300688567 created "2022-10-04" @default.
- W4300688567 creator A5006953866 @default.
- W4300688567 creator A5050775246 @default.
- W4300688567 creator A5056507799 @default.
- W4300688567 creator A5069451039 @default.
- W4300688567 creator A5087491763 @default.
- W4300688567 date "2022-10-18" @default.
- W4300688567 modified "2023-09-27" @default.
- W4300688567 title "Kinetic‐model‐based pathway optimization with application to reverse glycolysis in mammalian cells" @default.
- W4300688567 cites W1730769032 @default.
- W4300688567 cites W1934729702 @default.
- W4300688567 cites W1966761605 @default.
- W4300688567 cites W1969007958 @default.
- W4300688567 cites W1980875662 @default.
- W4300688567 cites W1989023497 @default.
- W4300688567 cites W2000081372 @default.
- W4300688567 cites W2005835980 @default.
- W4300688567 cites W2019692827 @default.
- W4300688567 cites W2020840252 @default.
- W4300688567 cites W2021351846 @default.
- W4300688567 cites W2021674665 @default.
- W4300688567 cites W2027118294 @default.
- W4300688567 cites W2028908433 @default.
- W4300688567 cites W2030618728 @default.
- W4300688567 cites W2039419058 @default.
- W4300688567 cites W2045652861 @default.
- W4300688567 cites W2046359382 @default.
- W4300688567 cites W2068269175 @default.
- W4300688567 cites W2068351003 @default.
- W4300688567 cites W2068918169 @default.
- W4300688567 cites W2075690392 @default.
- W4300688567 cites W2077779831 @default.
- W4300688567 cites W2081658589 @default.
- W4300688567 cites W2084219873 @default.
- W4300688567 cites W2094034289 @default.
- W4300688567 cites W2094262910 @default.
- W4300688567 cites W2099955651 @default.
- W4300688567 cites W2106223802 @default.
- W4300688567 cites W2119239003 @default.
- W4300688567 cites W2128215351 @default.
- W4300688567 cites W2128746754 @default.
- W4300688567 cites W2136832197 @default.
- W4300688567 cites W2141574380 @default.
- W4300688567 cites W2153373497 @default.
- W4300688567 cites W2156125169 @default.
- W4300688567 cites W2165612309 @default.
- W4300688567 cites W2288619269 @default.
- W4300688567 cites W2339493109 @default.
- W4300688567 cites W2623490906 @default.
- W4300688567 cites W2733001227 @default.
- W4300688567 cites W2764202526 @default.
- W4300688567 cites W2773764429 @default.
- W4300688567 cites W2799697493 @default.
- W4300688567 cites W2800400952 @default.
- W4300688567 cites W2801954748 @default.
- W4300688567 cites W2808180679 @default.
- W4300688567 cites W2910532619 @default.
- W4300688567 cites W2921101297 @default.
- W4300688567 cites W2936556410 @default.
- W4300688567 cites W2948290062 @default.
- W4300688567 cites W2965909492 @default.
- W4300688567 cites W2972702677 @default.
- W4300688567 cites W2979486499 @default.
- W4300688567 cites W2998583996 @default.
- W4300688567 cites W3117121284 @default.
- W4300688567 cites W4293177929 @default.
- W4300688567 doi "https://doi.org/10.1002/bit.28249" @default.
- W4300688567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36184902" @default.
- W4300688567 hasPublicationYear "2022" @default.
- W4300688567 type Work @default.
- W4300688567 citedByCount "0" @default.
- W4300688567 crossrefType "journal-article" @default.
- W4300688567 hasAuthorship W4300688567A5006953866 @default.
- W4300688567 hasAuthorship W4300688567A5050775246 @default.
- W4300688567 hasAuthorship W4300688567A5056507799 @default.
- W4300688567 hasAuthorship W4300688567A5069451039 @default.
- W4300688567 hasAuthorship W4300688567A5087491763 @default.
- W4300688567 hasConcept C104317684 @default.
- W4300688567 hasConcept C11413529 @default.
- W4300688567 hasConcept C127413603 @default.
- W4300688567 hasConcept C137836250 @default.
- W4300688567 hasConcept C152662350 @default.
- W4300688567 hasConcept C181199279 @default.
- W4300688567 hasConcept C183696295 @default.
- W4300688567 hasConcept C186060115 @default.
- W4300688567 hasConcept C191908910 @default.
- W4300688567 hasConcept C192989942 @default.
- W4300688567 hasConcept C20251656 @default.
- W4300688567 hasConcept C41008148 @default.
- W4300688567 hasConcept C55493867 @default.
- W4300688567 hasConcept C63479239 @default.
- W4300688567 hasConcept C6350086 @default.
- W4300688567 hasConcept C70721500 @default.
- W4300688567 hasConcept C86803240 @default.
- W4300688567 hasConceptScore W4300688567C104317684 @default.
- W4300688567 hasConceptScore W4300688567C11413529 @default.
- W4300688567 hasConceptScore W4300688567C127413603 @default.