Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300690468> ?p ?o ?g. }
- W4300690468 endingPage "2501" @default.
- W4300690468 startingPage "2494" @default.
- W4300690468 abstract "Export Objectives: Hypertension is a major risk factor for cardiovascular disease (CVD), which often escapes the diagnosis or should be confirmed by several office visits. The ECG is one of the most widely used diagnostic tools and could be of paramount importance in patients’ initial evaluation. Methods: We used machine learning techniques based on clinical parameters and features derived from the ECG, to detect hypertension in a population without CVD. We enrolled 1091 individuals who were classified as hypertensive or normotensive, and trained a Random Forest model, to detect the existence of hypertension. We then calculated the values for the Shapley additive explanations (SHAP), a sophisticated feature importance analysis, to interpret each feature's role in the Random Forest's results. Results: Our Random Forest model was able to distinguish hypertensive from normotensive patients with accuracy 84.2%, specificity 78.0%, sensitivity 84.0% and area under the receiver-operating curve 0.89, using a decision threshold of 0.6. Age, BMI, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV3), R wave amplitude in aVL and BMI-modified Sokolow-Lyon voltage (BMI divided by SV1+RV5), were the most important anthropometric and ECG-derived features in terms of the success of our model. Conclusion: Our machine learning algorithm is effective in the detection of hypertension in patients using ECG-derived and basic anthropometric criteria. Our findings open new horizon in the detection of many undiagnosed hypertensive individuals who have an increased CVD risk." @default.
- W4300690468 created "2022-10-04" @default.
- W4300690468 creator A5002773089 @default.
- W4300690468 creator A5007092246 @default.
- W4300690468 creator A5011460027 @default.
- W4300690468 creator A5020266816 @default.
- W4300690468 creator A5033563452 @default.
- W4300690468 creator A5035728517 @default.
- W4300690468 creator A5062287297 @default.
- W4300690468 creator A5072580896 @default.
- W4300690468 creator A5080538395 @default.
- W4300690468 creator A5082310755 @default.
- W4300690468 creator A5090825972 @default.
- W4300690468 date "2022-09-27" @default.
- W4300690468 modified "2023-09-27" @default.
- W4300690468 title "Artificial intelligence-based opportunistic screening for the detection of arterial hypertension through ECG signals" @default.
- W4300690468 cites W2154467145 @default.
- W4300690468 cites W2159687614 @default.
- W4300690468 cites W2768267412 @default.
- W4300690468 cites W2898821382 @default.
- W4300690468 cites W2916269539 @default.
- W4300690468 cites W3036926534 @default.
- W4300690468 cites W3038579985 @default.
- W4300690468 cites W3046921626 @default.
- W4300690468 cites W3048562900 @default.
- W4300690468 cites W3123173991 @default.
- W4300690468 cites W3127657277 @default.
- W4300690468 cites W3128877627 @default.
- W4300690468 cites W3131657490 @default.
- W4300690468 cites W3138961557 @default.
- W4300690468 cites W3163672477 @default.
- W4300690468 cites W3164461680 @default.
- W4300690468 cites W3164506787 @default.
- W4300690468 cites W3169460417 @default.
- W4300690468 cites W3194348931 @default.
- W4300690468 cites W3199206152 @default.
- W4300690468 cites W4205524109 @default.
- W4300690468 cites W4226335621 @default.
- W4300690468 doi "https://doi.org/10.1097/hjh.0000000000003286" @default.
- W4300690468 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36189460" @default.
- W4300690468 hasPublicationYear "2022" @default.
- W4300690468 type Work @default.
- W4300690468 citedByCount "0" @default.
- W4300690468 crossrefType "journal-article" @default.
- W4300690468 hasAuthorship W4300690468A5002773089 @default.
- W4300690468 hasAuthorship W4300690468A5007092246 @default.
- W4300690468 hasAuthorship W4300690468A5011460027 @default.
- W4300690468 hasAuthorship W4300690468A5020266816 @default.
- W4300690468 hasAuthorship W4300690468A5033563452 @default.
- W4300690468 hasAuthorship W4300690468A5035728517 @default.
- W4300690468 hasAuthorship W4300690468A5062287297 @default.
- W4300690468 hasAuthorship W4300690468A5072580896 @default.
- W4300690468 hasAuthorship W4300690468A5080538395 @default.
- W4300690468 hasAuthorship W4300690468A5082310755 @default.
- W4300690468 hasAuthorship W4300690468A5090825972 @default.
- W4300690468 hasBestOaLocation W43006904682 @default.
- W4300690468 hasConcept C11413529 @default.
- W4300690468 hasConcept C119857082 @default.
- W4300690468 hasConcept C126322002 @default.
- W4300690468 hasConcept C138885662 @default.
- W4300690468 hasConcept C154945302 @default.
- W4300690468 hasConcept C164705383 @default.
- W4300690468 hasConcept C169258074 @default.
- W4300690468 hasConcept C2776401178 @default.
- W4300690468 hasConcept C2908647359 @default.
- W4300690468 hasConcept C41008148 @default.
- W4300690468 hasConcept C41895202 @default.
- W4300690468 hasConcept C58471807 @default.
- W4300690468 hasConcept C61427482 @default.
- W4300690468 hasConcept C71924100 @default.
- W4300690468 hasConcept C99454951 @default.
- W4300690468 hasConceptScore W4300690468C11413529 @default.
- W4300690468 hasConceptScore W4300690468C119857082 @default.
- W4300690468 hasConceptScore W4300690468C126322002 @default.
- W4300690468 hasConceptScore W4300690468C138885662 @default.
- W4300690468 hasConceptScore W4300690468C154945302 @default.
- W4300690468 hasConceptScore W4300690468C164705383 @default.
- W4300690468 hasConceptScore W4300690468C169258074 @default.
- W4300690468 hasConceptScore W4300690468C2776401178 @default.
- W4300690468 hasConceptScore W4300690468C2908647359 @default.
- W4300690468 hasConceptScore W4300690468C41008148 @default.
- W4300690468 hasConceptScore W4300690468C41895202 @default.
- W4300690468 hasConceptScore W4300690468C58471807 @default.
- W4300690468 hasConceptScore W4300690468C61427482 @default.
- W4300690468 hasConceptScore W4300690468C71924100 @default.
- W4300690468 hasConceptScore W4300690468C99454951 @default.
- W4300690468 hasIssue "12" @default.
- W4300690468 hasLocation W43006904681 @default.
- W4300690468 hasLocation W43006904682 @default.
- W4300690468 hasLocation W43006904683 @default.
- W4300690468 hasOpenAccess W4300690468 @default.
- W4300690468 hasPrimaryLocation W43006904681 @default.
- W4300690468 hasRelatedWork W2911455822 @default.
- W4300690468 hasRelatedWork W3174196512 @default.
- W4300690468 hasRelatedWork W3211546796 @default.
- W4300690468 hasRelatedWork W4281560664 @default.
- W4300690468 hasRelatedWork W4281616679 @default.
- W4300690468 hasRelatedWork W4293525103 @default.