Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300690712> ?p ?o ?g. }
- W4300690712 endingPage "269" @default.
- W4300690712 startingPage "254" @default.
- W4300690712 abstract "Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable measurements. Cuff-based measurement paradigms have dominated ambulatory blood pressure (BP) measurements for multiple decades. Cuffless and non-invasive methods may offer various advantages, such as a continuous and undisturbing measurement character. This review presents a conceptual overview of recent advances in the field of cuffless measurement paradigms and possible future developments which would enable cuffless beat-to-beat BP estimation paradigms to become clinically viable. It was refrained from a direct comparison between most studies and focussed on a conceptual merger of the ideas and conclusions presented in landmark scientific literature. There are two main approaches to cuffless beat-to-beat BP estimation represented in the scientific literature: First, models based on the physiological understanding of the cardiovascular system, mostly reliant on the pulse wave velocity combined with additional parameters. Second, models based on Deep Learning techniques, which have already shown great performance in various other medical fields. This review wants to present the advantages and limitations of each approach. Following this, the conceptional idea of unifying the benefits of physiological understanding and Deep Learning techniques for beat-to-beat BP estimation is presented. This could lead to a generalised and uniform solution for cuffless beat-to-beat BP estimations. This would not only make them an attractive clinical complement or even alternative to conventional cuff-based measurement paradigms but would substantially change how we think about BP as a fundamental marker of cardiovascular medicine.This concept review wants to highlight the current state of non-invasive cuffless continuous blood pressure estimation.Cuffless blood pressure measurement devices usually rely on pulse wave velocity.Pulse wave velocity is mostly calculated via measuring pulse arrival time.Using pulse transit time instead of pulse arrival time showed improved results.Additional biomarkers like heart rate, photoplethysmogram intensity ratio or heart rate power spectrum ratio can be used to improve measurement precision.For cuffless and cuff-based devices intended for 24-hour BP measurements, a more refined validation protocol is required.The ESH assesses the measurement accuracy of cuffless devices as unclear and does not recommend hypertension diagnosis based on cuffless devices.Machine Learning and Deep Learning applications are a powerful tool to generate complex algorithms, which can be used to estimate blood pressure.Selecting biomarkers like pulse wave velocity, heart rate, etc. as input features for Deep Learning systems would be a very promising approach to measure blood pressure more precise." @default.
- W4300690712 created "2022-10-04" @default.
- W4300690712 creator A5009541431 @default.
- W4300690712 creator A5014545422 @default.
- W4300690712 creator A5082489369 @default.
- W4300690712 date "2022-10-02" @default.
- W4300690712 modified "2023-10-02" @default.
- W4300690712 title "Continuous cuffless and non-invasive measurement of arterial blood pressure—concepts and future perspectives" @default.
- W4300690712 cites W1968120469 @default.
- W4300690712 cites W1987077480 @default.
- W4300690712 cites W1991029547 @default.
- W4300690712 cites W1994005439 @default.
- W4300690712 cites W1996206532 @default.
- W4300690712 cites W2022183999 @default.
- W4300690712 cites W2028670183 @default.
- W4300690712 cites W2049176868 @default.
- W4300690712 cites W2065232710 @default.
- W4300690712 cites W2083960157 @default.
- W4300690712 cites W2096200507 @default.
- W4300690712 cites W2096711200 @default.
- W4300690712 cites W2102794110 @default.
- W4300690712 cites W2111256021 @default.
- W4300690712 cites W2112400936 @default.
- W4300690712 cites W2162997503 @default.
- W4300690712 cites W2177870565 @default.
- W4300690712 cites W2338236284 @default.
- W4300690712 cites W2491700890 @default.
- W4300690712 cites W2537238291 @default.
- W4300690712 cites W2581082771 @default.
- W4300690712 cites W2586108858 @default.
- W4300690712 cites W2755894455 @default.
- W4300690712 cites W2756460743 @default.
- W4300690712 cites W2767648029 @default.
- W4300690712 cites W2770837559 @default.
- W4300690712 cites W2784960687 @default.
- W4300690712 cites W2786907498 @default.
- W4300690712 cites W2789367970 @default.
- W4300690712 cites W2809254203 @default.
- W4300690712 cites W2884013251 @default.
- W4300690712 cites W2886861080 @default.
- W4300690712 cites W2888589263 @default.
- W4300690712 cites W2888982604 @default.
- W4300690712 cites W2890950635 @default.
- W4300690712 cites W2894890204 @default.
- W4300690712 cites W2901218091 @default.
- W4300690712 cites W2902485108 @default.
- W4300690712 cites W2905810301 @default.
- W4300690712 cites W2906432502 @default.
- W4300690712 cites W2922594471 @default.
- W4300690712 cites W2944851425 @default.
- W4300690712 cites W2946901414 @default.
- W4300690712 cites W2948013316 @default.
- W4300690712 cites W2963362070 @default.
- W4300690712 cites W2969790209 @default.
- W4300690712 cites W2979877842 @default.
- W4300690712 cites W2983580362 @default.
- W4300690712 cites W3002860504 @default.
- W4300690712 cites W3014413945 @default.
- W4300690712 cites W3016365944 @default.
- W4300690712 cites W3019997599 @default.
- W4300690712 cites W3038270645 @default.
- W4300690712 cites W3089500187 @default.
- W4300690712 cites W3090602117 @default.
- W4300690712 cites W3101824250 @default.
- W4300690712 cites W3104425511 @default.
- W4300690712 cites W3111042309 @default.
- W4300690712 cites W3117498368 @default.
- W4300690712 cites W3118566927 @default.
- W4300690712 cites W3119532717 @default.
- W4300690712 cites W3123642578 @default.
- W4300690712 cites W3134435768 @default.
- W4300690712 cites W3185401039 @default.
- W4300690712 cites W4240310768 @default.
- W4300690712 cites W4283030380 @default.
- W4300690712 cites W4285588705 @default.
- W4300690712 cites W4293878051 @default.
- W4300690712 doi "https://doi.org/10.1080/08037051.2022.2128716" @default.
- W4300690712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36184775" @default.
- W4300690712 hasPublicationYear "2022" @default.
- W4300690712 type Work @default.
- W4300690712 citedByCount "6" @default.
- W4300690712 countsByYear W43006907122022 @default.
- W4300690712 countsByYear W43006907122023 @default.
- W4300690712 crossrefType "journal-article" @default.
- W4300690712 hasAuthorship W4300690712A5009541431 @default.
- W4300690712 hasAuthorship W4300690712A5014545422 @default.
- W4300690712 hasAuthorship W4300690712A5082489369 @default.
- W4300690712 hasConcept C121332964 @default.
- W4300690712 hasConcept C126322002 @default.
- W4300690712 hasConcept C177713679 @default.
- W4300690712 hasConcept C189809214 @default.
- W4300690712 hasConcept C24890656 @default.
- W4300690712 hasConcept C2778319312 @default.
- W4300690712 hasConcept C2779974597 @default.
- W4300690712 hasConcept C512399662 @default.
- W4300690712 hasConcept C71924100 @default.
- W4300690712 hasConcept C84393581 @default.
- W4300690712 hasConceptScore W4300690712C121332964 @default.