Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300692913> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4300692913 abstract "Spoken dialogue systems allow humans to interact with machines using natural speech. As such, they have many benefits. By using speech as the primary communication medium, a computer interface can facilitate swift, human-like acquisition of information. In recent years, speech interfaces have become ever more popular, as is evident from the rise of personal assistants such as Siri, Google Now, Cortana and Amazon Alexa. Recently, data-driven machine learning methods have been applied to dialogue modelling and the results achieved for limited-domain applications are comparable to or outperform traditional approaches. Methods based on Gaussian processes are particularly effective as they enable good models to be estimated from limited training data. Furthermore, they provide an explicit estimate of the uncertainty which is particularly useful for reinforcement learning. This article explores the additional steps that are necessary to extend these methods to model multiple dialogue domains. We show that Gaussian process reinforcement learning is an elegant framework that naturally supports a range of methods, including prior knowledge, Bayesian committee machines and multi-agent learning, for facilitating extensible and adaptable dialogue systems." @default.
- W4300692913 created "2022-10-04" @default.
- W4300692913 creator A5019913562 @default.
- W4300692913 creator A5030147577 @default.
- W4300692913 creator A5040922365 @default.
- W4300692913 creator A5051889115 @default.
- W4300692913 creator A5058838995 @default.
- W4300692913 creator A5062940912 @default.
- W4300692913 creator A5077472653 @default.
- W4300692913 creator A5087009911 @default.
- W4300692913 date "2016-09-09" @default.
- W4300692913 modified "2023-09-26" @default.
- W4300692913 title "Dialogue manager domain adaptation using Gaussian process reinforcement learning" @default.
- W4300692913 doi "https://doi.org/10.48550/arxiv.1609.02846" @default.
- W4300692913 hasPublicationYear "2016" @default.
- W4300692913 type Work @default.
- W4300692913 citedByCount "0" @default.
- W4300692913 crossrefType "posted-content" @default.
- W4300692913 hasAuthorship W4300692913A5019913562 @default.
- W4300692913 hasAuthorship W4300692913A5030147577 @default.
- W4300692913 hasAuthorship W4300692913A5040922365 @default.
- W4300692913 hasAuthorship W4300692913A5051889115 @default.
- W4300692913 hasAuthorship W4300692913A5058838995 @default.
- W4300692913 hasAuthorship W4300692913A5062940912 @default.
- W4300692913 hasAuthorship W4300692913A5077472653 @default.
- W4300692913 hasAuthorship W4300692913A5087009911 @default.
- W4300692913 hasBestOaLocation W43006929131 @default.
- W4300692913 hasConcept C107457646 @default.
- W4300692913 hasConcept C107673813 @default.
- W4300692913 hasConcept C111919701 @default.
- W4300692913 hasConcept C119857082 @default.
- W4300692913 hasConcept C120665830 @default.
- W4300692913 hasConcept C121332964 @default.
- W4300692913 hasConcept C127413603 @default.
- W4300692913 hasConcept C134306372 @default.
- W4300692913 hasConcept C136764020 @default.
- W4300692913 hasConcept C139807058 @default.
- W4300692913 hasConcept C146978453 @default.
- W4300692913 hasConcept C154945302 @default.
- W4300692913 hasConcept C163716315 @default.
- W4300692913 hasConcept C173853756 @default.
- W4300692913 hasConcept C190954187 @default.
- W4300692913 hasConcept C204323151 @default.
- W4300692913 hasConcept C33923547 @default.
- W4300692913 hasConcept C36503486 @default.
- W4300692913 hasConcept C41008148 @default.
- W4300692913 hasConcept C61326573 @default.
- W4300692913 hasConcept C62520636 @default.
- W4300692913 hasConcept C97541855 @default.
- W4300692913 hasConcept C98045186 @default.
- W4300692913 hasConceptScore W4300692913C107457646 @default.
- W4300692913 hasConceptScore W4300692913C107673813 @default.
- W4300692913 hasConceptScore W4300692913C111919701 @default.
- W4300692913 hasConceptScore W4300692913C119857082 @default.
- W4300692913 hasConceptScore W4300692913C120665830 @default.
- W4300692913 hasConceptScore W4300692913C121332964 @default.
- W4300692913 hasConceptScore W4300692913C127413603 @default.
- W4300692913 hasConceptScore W4300692913C134306372 @default.
- W4300692913 hasConceptScore W4300692913C136764020 @default.
- W4300692913 hasConceptScore W4300692913C139807058 @default.
- W4300692913 hasConceptScore W4300692913C146978453 @default.
- W4300692913 hasConceptScore W4300692913C154945302 @default.
- W4300692913 hasConceptScore W4300692913C163716315 @default.
- W4300692913 hasConceptScore W4300692913C173853756 @default.
- W4300692913 hasConceptScore W4300692913C190954187 @default.
- W4300692913 hasConceptScore W4300692913C204323151 @default.
- W4300692913 hasConceptScore W4300692913C33923547 @default.
- W4300692913 hasConceptScore W4300692913C36503486 @default.
- W4300692913 hasConceptScore W4300692913C41008148 @default.
- W4300692913 hasConceptScore W4300692913C61326573 @default.
- W4300692913 hasConceptScore W4300692913C62520636 @default.
- W4300692913 hasConceptScore W4300692913C97541855 @default.
- W4300692913 hasConceptScore W4300692913C98045186 @default.
- W4300692913 hasLocation W43006929131 @default.
- W4300692913 hasLocation W43006929132 @default.
- W4300692913 hasOpenAccess W4300692913 @default.
- W4300692913 hasPrimaryLocation W43006929131 @default.
- W4300692913 hasRelatedWork W115891841 @default.
- W4300692913 hasRelatedWork W163167916 @default.
- W4300692913 hasRelatedWork W1868819313 @default.
- W4300692913 hasRelatedWork W2069072783 @default.
- W4300692913 hasRelatedWork W3080089418 @default.
- W4300692913 hasRelatedWork W4280525836 @default.
- W4300692913 hasRelatedWork W4319083788 @default.
- W4300692913 hasRelatedWork W4384929195 @default.
- W4300692913 hasRelatedWork W4384932390 @default.
- W4300692913 hasRelatedWork W4386576665 @default.
- W4300692913 isParatext "false" @default.
- W4300692913 isRetracted "false" @default.
- W4300692913 workType "article" @default.