Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300773023> ?p ?o ?g. }
- W4300773023 endingPage "282" @default.
- W4300773023 startingPage "267" @default.
- W4300773023 abstract "Emotion refers to a person’s current mental and cognitive condition. It demonstrates that it plays a dynamic function in communication, decision-making, and physical health. The development of a human emotion recognition system shifted the focus of research in a variety of fields, including cognitive science, computer science, psychology, neuroscience, and artificial intelligence. Emotion recognition is a subset of the brain–computer interface (BCI). Speech, facial expressions, and EEG data all can be used to determine emotions. EEG waves have shown to be an excellent choice for automatic emotion recognition because they cannot be faked like speech or facial expressions. The purpose of this work is to conduct a survey of emotion recognition using deep learning techniques. The benefits of employing deep learning algorithms in the extraction and categorization of EEG signals are investigated. This study could pave the way for more research into the usage of deep learning techniques to EEG-based emotion recognition systems." @default.
- W4300773023 created "2022-10-04" @default.
- W4300773023 creator A5001013642 @default.
- W4300773023 creator A5040766741 @default.
- W4300773023 creator A5062590744 @default.
- W4300773023 date "2022-10-04" @default.
- W4300773023 modified "2023-09-27" @default.
- W4300773023 title "A Comprehensive Study on Automatic Emotion Detection System Using EEG Signals and Deep Learning Algorithms" @default.
- W4300773023 cites W1948496279 @default.
- W4300773023 cites W2002055708 @default.
- W4300773023 cites W2035642468 @default.
- W4300773023 cites W2041681885 @default.
- W4300773023 cites W2122098299 @default.
- W4300773023 cites W2165857685 @default.
- W4300773023 cites W2516594906 @default.
- W4300773023 cites W2587369276 @default.
- W4300773023 cites W2625929003 @default.
- W4300773023 cites W2761266324 @default.
- W4300773023 cites W2762323924 @default.
- W4300773023 cites W2772766867 @default.
- W4300773023 cites W2796509113 @default.
- W4300773023 cites W2799761007 @default.
- W4300773023 cites W2811252967 @default.
- W4300773023 cites W2888132296 @default.
- W4300773023 cites W2888184955 @default.
- W4300773023 cites W2889782437 @default.
- W4300773023 cites W2908922193 @default.
- W4300773023 cites W2922188941 @default.
- W4300773023 cites W2934123712 @default.
- W4300773023 cites W2944401411 @default.
- W4300773023 cites W2951999654 @default.
- W4300773023 cites W2953214845 @default.
- W4300773023 cites W2964400450 @default.
- W4300773023 cites W3004735003 @default.
- W4300773023 cites W3035101080 @default.
- W4300773023 cites W3043308633 @default.
- W4300773023 cites W3044186523 @default.
- W4300773023 cites W3044317125 @default.
- W4300773023 cites W3084140714 @default.
- W4300773023 cites W3089423349 @default.
- W4300773023 cites W3091553737 @default.
- W4300773023 cites W3112960229 @default.
- W4300773023 cites W3118441062 @default.
- W4300773023 cites W3120929420 @default.
- W4300773023 cites W3129064953 @default.
- W4300773023 cites W3172316648 @default.
- W4300773023 doi "https://doi.org/10.1007/978-981-19-2126-1_21" @default.
- W4300773023 hasPublicationYear "2022" @default.
- W4300773023 type Work @default.
- W4300773023 citedByCount "0" @default.
- W4300773023 crossrefType "book-chapter" @default.
- W4300773023 hasAuthorship W4300773023A5001013642 @default.
- W4300773023 hasAuthorship W4300773023A5040766741 @default.
- W4300773023 hasAuthorship W4300773023A5062590744 @default.
- W4300773023 hasConcept C108583219 @default.
- W4300773023 hasConcept C118552586 @default.
- W4300773023 hasConcept C154945302 @default.
- W4300773023 hasConcept C15744967 @default.
- W4300773023 hasConcept C169760540 @default.
- W4300773023 hasConcept C169900460 @default.
- W4300773023 hasConcept C173201364 @default.
- W4300773023 hasConcept C195704467 @default.
- W4300773023 hasConcept C206310091 @default.
- W4300773023 hasConcept C2777438025 @default.
- W4300773023 hasConcept C28490314 @default.
- W4300773023 hasConcept C2988148770 @default.
- W4300773023 hasConcept C41008148 @default.
- W4300773023 hasConcept C522805319 @default.
- W4300773023 hasConcept C6438553 @default.
- W4300773023 hasConcept C94124525 @default.
- W4300773023 hasConceptScore W4300773023C108583219 @default.
- W4300773023 hasConceptScore W4300773023C118552586 @default.
- W4300773023 hasConceptScore W4300773023C154945302 @default.
- W4300773023 hasConceptScore W4300773023C15744967 @default.
- W4300773023 hasConceptScore W4300773023C169760540 @default.
- W4300773023 hasConceptScore W4300773023C169900460 @default.
- W4300773023 hasConceptScore W4300773023C173201364 @default.
- W4300773023 hasConceptScore W4300773023C195704467 @default.
- W4300773023 hasConceptScore W4300773023C206310091 @default.
- W4300773023 hasConceptScore W4300773023C2777438025 @default.
- W4300773023 hasConceptScore W4300773023C28490314 @default.
- W4300773023 hasConceptScore W4300773023C2988148770 @default.
- W4300773023 hasConceptScore W4300773023C41008148 @default.
- W4300773023 hasConceptScore W4300773023C522805319 @default.
- W4300773023 hasConceptScore W4300773023C6438553 @default.
- W4300773023 hasConceptScore W4300773023C94124525 @default.
- W4300773023 hasLocation W43007730231 @default.
- W4300773023 hasOpenAccess W4300773023 @default.
- W4300773023 hasPrimaryLocation W43007730231 @default.
- W4300773023 hasRelatedWork W1967993123 @default.
- W4300773023 hasRelatedWork W2338034222 @default.
- W4300773023 hasRelatedWork W2505228240 @default.
- W4300773023 hasRelatedWork W2788007871 @default.
- W4300773023 hasRelatedWork W2899077601 @default.
- W4300773023 hasRelatedWork W2900483619 @default.
- W4300773023 hasRelatedWork W3033658423 @default.
- W4300773023 hasRelatedWork W3156860372 @default.
- W4300773023 hasRelatedWork W4285815433 @default.