Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300773113> ?p ?o ?g. }
- W4300773113 abstract "<sec> <title>BACKGROUND</title> Social determinants of health (SDoH), such as geographic neighborhoods, access to healthcare, education, and social structure are important factors affecting people’s health and health outcomes. SDoH of patients are scarcely documented in a discrete format in electronic health records (EHRs) but are often available in free-text clinical narratives such as physician notes. Innovative methods like natural language processing (NLP) are being developed to identify and extract SDoH from EHRs, but it is imperative that the input of key stakeholders is included as NLP systems are designed. </sec> <sec> <title>OBJECTIVE</title> Understand the feasibility, challenges, and benefits of developing an NLP system to uncover SDoH from clinical narratives by conducting interviews with key stakeholders: 1) clinicians, 2) data analysts, 3) citizen scientists and 4) patient navigators. </sec> <sec> <title>METHODS</title> Individuals who frequently work with SDoH data were invited to participate in in-depth, semi-structured interviews. All interviews were recorded and subsequently transcribed. After coding transcripts and developing a codebook, the constant comparative method was used to generate themes. </sec> <sec> <title>RESULTS</title> A total of 16 participants were interviewed (five data analysts, four patient navigators, four physicians, and three citizen scientists). Two themes emerged related to collecting SDoH: 1) the importance of SDoH data and 2) SDoH arises during patient-clinician communication. The challenges of collecting SDoH data included: 1) informal communication and 2) the need for expertise and knowledge about SDoH. Ways of improving how SDoH data can be incorporated into health services research and patient care were to 1) empower patients and 2) make the data actionable. </sec> <sec> <title>CONCLUSIONS</title> Extracting SDoH from EHRs was considered valuable and necessary, but obstacles such as narrative data format can make the process difficult. NLP can be a potential solution, but as the technology is developed, it is important to consider how key stakeholders document SDoH, apply the NLP systems, and use the extracted SDoH in health outcome studies.natural language processing, qualitative, social determinants of health, electronic health records </sec>" @default.
- W4300773113 created "2022-10-04" @default.
- W4300773113 creator A5010253402 @default.
- W4300773113 creator A5015181613 @default.
- W4300773113 creator A5020154592 @default.
- W4300773113 creator A5030951014 @default.
- W4300773113 creator A5040363472 @default.
- W4300773113 creator A5044217830 @default.
- W4300773113 creator A5052505769 @default.
- W4300773113 date "2022-09-28" @default.
- W4300773113 modified "2023-10-14" @default.
- W4300773113 title "Barriers and facilitators of obtaining SDoH of patients with cancer through the EHR using natural language processing technology: A qualitative study (Preprint)" @default.
- W4300773113 cites W1971796909 @default.
- W4300773113 cites W2046120141 @default.
- W4300773113 cites W2058044179 @default.
- W4300773113 cites W2071213671 @default.
- W4300773113 cites W2072399290 @default.
- W4300773113 cites W2104860609 @default.
- W4300773113 cites W2342360716 @default.
- W4300773113 cites W2796180820 @default.
- W4300773113 cites W2883350963 @default.
- W4300773113 cites W2899248972 @default.
- W4300773113 cites W2946573635 @default.
- W4300773113 cites W3025114311 @default.
- W4300773113 cites W3034019787 @default.
- W4300773113 cites W3040419600 @default.
- W4300773113 cites W3104193169 @default.
- W4300773113 cites W3115990498 @default.
- W4300773113 cites W3128717124 @default.
- W4300773113 cites W3131209437 @default.
- W4300773113 cites W3151993130 @default.
- W4300773113 cites W3167179910 @default.
- W4300773113 cites W3200519641 @default.
- W4300773113 cites W3202375701 @default.
- W4300773113 cites W3204630755 @default.
- W4300773113 cites W3207894119 @default.
- W4300773113 cites W4210302260 @default.
- W4300773113 cites W4210565680 @default.
- W4300773113 cites W4212860675 @default.
- W4300773113 cites W4220772663 @default.
- W4300773113 cites W4225549433 @default.
- W4300773113 cites W4231354750 @default.
- W4300773113 cites W4284961115 @default.
- W4300773113 cites W4291313167 @default.
- W4300773113 cites W4296884010 @default.
- W4300773113 cites W79229537 @default.
- W4300773113 doi "https://doi.org/10.2196/preprints.43059" @default.
- W4300773113 hasPublicationYear "2022" @default.
- W4300773113 type Work @default.
- W4300773113 citedByCount "0" @default.
- W4300773113 crossrefType "posted-content" @default.
- W4300773113 hasAuthorship W4300773113A5010253402 @default.
- W4300773113 hasAuthorship W4300773113A5015181613 @default.
- W4300773113 hasAuthorship W4300773113A5020154592 @default.
- W4300773113 hasAuthorship W4300773113A5030951014 @default.
- W4300773113 hasAuthorship W4300773113A5040363472 @default.
- W4300773113 hasAuthorship W4300773113A5044217830 @default.
- W4300773113 hasAuthorship W4300773113A5052505769 @default.
- W4300773113 hasConcept C138885662 @default.
- W4300773113 hasConcept C144024400 @default.
- W4300773113 hasConcept C156325361 @default.
- W4300773113 hasConcept C160735492 @default.
- W4300773113 hasConcept C17744445 @default.
- W4300773113 hasConcept C190248442 @default.
- W4300773113 hasConcept C199033989 @default.
- W4300773113 hasConcept C199539241 @default.
- W4300773113 hasConcept C36289849 @default.
- W4300773113 hasConcept C39549134 @default.
- W4300773113 hasConcept C41895202 @default.
- W4300773113 hasConcept C509550671 @default.
- W4300773113 hasConcept C71924100 @default.
- W4300773113 hasConcept C78491826 @default.
- W4300773113 hasConceptScore W4300773113C138885662 @default.
- W4300773113 hasConceptScore W4300773113C144024400 @default.
- W4300773113 hasConceptScore W4300773113C156325361 @default.
- W4300773113 hasConceptScore W4300773113C160735492 @default.
- W4300773113 hasConceptScore W4300773113C17744445 @default.
- W4300773113 hasConceptScore W4300773113C190248442 @default.
- W4300773113 hasConceptScore W4300773113C199033989 @default.
- W4300773113 hasConceptScore W4300773113C199539241 @default.
- W4300773113 hasConceptScore W4300773113C36289849 @default.
- W4300773113 hasConceptScore W4300773113C39549134 @default.
- W4300773113 hasConceptScore W4300773113C41895202 @default.
- W4300773113 hasConceptScore W4300773113C509550671 @default.
- W4300773113 hasConceptScore W4300773113C71924100 @default.
- W4300773113 hasConceptScore W4300773113C78491826 @default.
- W4300773113 hasLocation W43007731131 @default.
- W4300773113 hasOpenAccess W4300773113 @default.
- W4300773113 hasPrimaryLocation W43007731131 @default.
- W4300773113 hasRelatedWork W1536162484 @default.
- W4300773113 hasRelatedWork W2110387617 @default.
- W4300773113 hasRelatedWork W2188142764 @default.
- W4300773113 hasRelatedWork W2284018371 @default.
- W4300773113 hasRelatedWork W2363024216 @default.
- W4300773113 hasRelatedWork W2497772698 @default.
- W4300773113 hasRelatedWork W2748952813 @default.
- W4300773113 hasRelatedWork W2899084033 @default.
- W4300773113 hasRelatedWork W2997577522 @default.
- W4300773113 hasRelatedWork W4293103137 @default.
- W4300773113 isParatext "false" @default.