Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300861385> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4300861385 endingPage "10" @default.
- W4300861385 startingPage "1" @default.
- W4300861385 abstract "It is well known in image recognition that global features represent the overall and have the ability to generalize an entire object, while local features can reflect the details, both of which are important for extracting more discriminative features. Recent research has shown that the performance of convolutional neural networks can be improved by introducing an attention module. In this paper, we propose a simple and effective channel attention module named layer feature that meets channel attention module (LC module, LCM), which combines the layer global information with channel dependence to calibrate the correlation between channel features and then adaptively recalibrates channel-wise feature responses. Compared with the traditional channel attention methods, the LC module utilizes the most significant information that needs to be focused on in the overall features to refine the channel relationship. Through empirical studies on CIFAR-10, CIFAR-100, and mini-ImageNet, this work proved its superiority compared to other attention modules in different DCNNs. Furthermore, we performed the two-dimensional visualization of the feature map through the class activation map and intuitively analyzed the effectiveness of the model." @default.
- W4300861385 created "2022-10-04" @default.
- W4300861385 creator A5014017044 @default.
- W4300861385 creator A5043275342 @default.
- W4300861385 creator A5051178646 @default.
- W4300861385 creator A5051955712 @default.
- W4300861385 creator A5074019805 @default.
- W4300861385 creator A5085491808 @default.
- W4300861385 date "2022-10-03" @default.
- W4300861385 modified "2023-10-18" @default.
- W4300861385 title "Channel-Wise Correlation Calibrates Attention Module for Convolutional Neural Networks" @default.
- W4300861385 cites W2058917167 @default.
- W4300861385 cites W2117539524 @default.
- W4300861385 cites W2498789492 @default.
- W4300861385 cites W2963881378 @default.
- W4300861385 cites W2964350391 @default.
- W4300861385 cites W2969597887 @default.
- W4300861385 cites W3034768625 @default.
- W4300861385 cites W3035253074 @default.
- W4300861385 cites W3125107615 @default.
- W4300861385 doi "https://doi.org/10.1155/2022/2000170" @default.
- W4300861385 hasPublicationYear "2022" @default.
- W4300861385 type Work @default.
- W4300861385 citedByCount "0" @default.
- W4300861385 crossrefType "journal-article" @default.
- W4300861385 hasAuthorship W4300861385A5014017044 @default.
- W4300861385 hasAuthorship W4300861385A5043275342 @default.
- W4300861385 hasAuthorship W4300861385A5051178646 @default.
- W4300861385 hasAuthorship W4300861385A5051955712 @default.
- W4300861385 hasAuthorship W4300861385A5074019805 @default.
- W4300861385 hasAuthorship W4300861385A5085491808 @default.
- W4300861385 hasBestOaLocation W43008613851 @default.
- W4300861385 hasConcept C127162648 @default.
- W4300861385 hasConcept C138885662 @default.
- W4300861385 hasConcept C153180895 @default.
- W4300861385 hasConcept C154945302 @default.
- W4300861385 hasConcept C178790620 @default.
- W4300861385 hasConcept C185592680 @default.
- W4300861385 hasConcept C2776401178 @default.
- W4300861385 hasConcept C2779227376 @default.
- W4300861385 hasConcept C2781238097 @default.
- W4300861385 hasConcept C31258907 @default.
- W4300861385 hasConcept C36464697 @default.
- W4300861385 hasConcept C41008148 @default.
- W4300861385 hasConcept C41895202 @default.
- W4300861385 hasConcept C52622490 @default.
- W4300861385 hasConcept C81363708 @default.
- W4300861385 hasConcept C97931131 @default.
- W4300861385 hasConceptScore W4300861385C127162648 @default.
- W4300861385 hasConceptScore W4300861385C138885662 @default.
- W4300861385 hasConceptScore W4300861385C153180895 @default.
- W4300861385 hasConceptScore W4300861385C154945302 @default.
- W4300861385 hasConceptScore W4300861385C178790620 @default.
- W4300861385 hasConceptScore W4300861385C185592680 @default.
- W4300861385 hasConceptScore W4300861385C2776401178 @default.
- W4300861385 hasConceptScore W4300861385C2779227376 @default.
- W4300861385 hasConceptScore W4300861385C2781238097 @default.
- W4300861385 hasConceptScore W4300861385C31258907 @default.
- W4300861385 hasConceptScore W4300861385C36464697 @default.
- W4300861385 hasConceptScore W4300861385C41008148 @default.
- W4300861385 hasConceptScore W4300861385C41895202 @default.
- W4300861385 hasConceptScore W4300861385C52622490 @default.
- W4300861385 hasConceptScore W4300861385C81363708 @default.
- W4300861385 hasConceptScore W4300861385C97931131 @default.
- W4300861385 hasLocation W43008613851 @default.
- W4300861385 hasOpenAccess W4300861385 @default.
- W4300861385 hasPrimaryLocation W43008613851 @default.
- W4300861385 hasRelatedWork W2024160000 @default.
- W4300861385 hasRelatedWork W2061273563 @default.
- W4300861385 hasRelatedWork W2285052147 @default.
- W4300861385 hasRelatedWork W2406522397 @default.
- W4300861385 hasRelatedWork W2546942002 @default.
- W4300861385 hasRelatedWork W2725397116 @default.
- W4300861385 hasRelatedWork W2729514902 @default.
- W4300861385 hasRelatedWork W2773500201 @default.
- W4300861385 hasRelatedWork W2806866760 @default.
- W4300861385 hasRelatedWork W2970216048 @default.
- W4300861385 hasVolume "2022" @default.
- W4300861385 isParatext "false" @default.
- W4300861385 isRetracted "false" @default.
- W4300861385 workType "article" @default.