Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300861664> ?p ?o ?g. }
- W4300861664 endingPage "1261" @default.
- W4300861664 startingPage "1250" @default.
- W4300861664 abstract "Biological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework. Our method, BIONIC (Biological Network Integration using Convolutions), learns features that contain substantially more functional information compared to existing approaches. BIONIC has unsupervised and semisupervised learning modes, making use of available gene function annotations. BIONIC is scalable in both size and quantity of the input networks, making it feasible to integrate numerous networks on the scale of the human genome. To demonstrate the use of BIONIC in identifying new biology, we predicted and experimentally validated essential gene chemical-genetic interactions from nonessential gene profiles in yeast." @default.
- W4300861664 created "2022-10-04" @default.
- W4300861664 creator A5005039657 @default.
- W4300861664 creator A5005507431 @default.
- W4300861664 creator A5010789029 @default.
- W4300861664 creator A5023165801 @default.
- W4300861664 creator A5046341456 @default.
- W4300861664 creator A5047202863 @default.
- W4300861664 creator A5054922975 @default.
- W4300861664 creator A5060449251 @default.
- W4300861664 creator A5060486921 @default.
- W4300861664 creator A5061772377 @default.
- W4300861664 creator A5067419317 @default.
- W4300861664 creator A5076672720 @default.
- W4300861664 creator A5080545920 @default.
- W4300861664 date "2022-10-01" @default.
- W4300861664 modified "2023-10-17" @default.
- W4300861664 title "BIONIC: biological network integration using convolutions" @default.
- W4300861664 cites W1536320539 @default.
- W4300861664 cites W1611787727 @default.
- W4300861664 cites W1678356000 @default.
- W4300861664 cites W1822930845 @default.
- W4300861664 cites W1838945435 @default.
- W4300861664 cites W1921642159 @default.
- W4300861664 cites W1970940691 @default.
- W4300861664 cites W1976526581 @default.
- W4300861664 cites W1984160203 @default.
- W4300861664 cites W1987219048 @default.
- W4300861664 cites W1993393187 @default.
- W4300861664 cites W2012762978 @default.
- W4300861664 cites W2013269321 @default.
- W4300861664 cites W2021181666 @default.
- W4300861664 cites W2022633023 @default.
- W4300861664 cites W2032252795 @default.
- W4300861664 cites W2043764521 @default.
- W4300861664 cites W2077941487 @default.
- W4300861664 cites W2081375228 @default.
- W4300861664 cites W2085719025 @default.
- W4300861664 cites W2101441813 @default.
- W4300861664 cites W2101674614 @default.
- W4300861664 cites W2103017472 @default.
- W4300861664 cites W2106391842 @default.
- W4300861664 cites W2106543077 @default.
- W4300861664 cites W2112464428 @default.
- W4300861664 cites W2116117181 @default.
- W4300861664 cites W2124649441 @default.
- W4300861664 cites W2132280699 @default.
- W4300861664 cites W2136401666 @default.
- W4300861664 cites W2136987752 @default.
- W4300861664 cites W2142498627 @default.
- W4300861664 cites W2150671144 @default.
- W4300861664 cites W2152360905 @default.
- W4300861664 cites W2152455126 @default.
- W4300861664 cites W2152896172 @default.
- W4300861664 cites W2159482845 @default.
- W4300861664 cites W2159675211 @default.
- W4300861664 cites W2162928287 @default.
- W4300861664 cites W2163485494 @default.
- W4300861664 cites W2165533158 @default.
- W4300861664 cites W2194775991 @default.
- W4300861664 cites W2239238081 @default.
- W4300861664 cites W2522417827 @default.
- W4300861664 cites W2556519015 @default.
- W4300861664 cites W2566919850 @default.
- W4300861664 cites W2602530292 @default.
- W4300861664 cites W2616561032 @default.
- W4300861664 cites W2725040470 @default.
- W4300861664 cites W2730472814 @default.
- W4300861664 cites W2738438224 @default.
- W4300861664 cites W2808845633 @default.
- W4300861664 cites W2899003199 @default.
- W4300861664 cites W2899126350 @default.
- W4300861664 cites W2909529273 @default.
- W4300861664 cites W2911964244 @default.
- W4300861664 cites W2912542262 @default.
- W4300861664 cites W2951422523 @default.
- W4300861664 cites W2962756421 @default.
- W4300861664 cites W3006268927 @default.
- W4300861664 cites W3010636143 @default.
- W4300861664 cites W3093850691 @default.
- W4300861664 cites W3104097132 @default.
- W4300861664 cites W3177500196 @default.
- W4300861664 cites W3199851388 @default.
- W4300861664 cites W4205806783 @default.
- W4300861664 cites W4239510810 @default.
- W4300861664 cites W4294216483 @default.
- W4300861664 doi "https://doi.org/10.1038/s41592-022-01616-x" @default.
- W4300861664 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36192463" @default.
- W4300861664 hasPublicationYear "2022" @default.
- W4300861664 type Work @default.
- W4300861664 citedByCount "11" @default.
- W4300861664 countsByYear W43008616642021 @default.
- W4300861664 countsByYear W43008616642023 @default.
- W4300861664 crossrefType "journal-article" @default.
- W4300861664 hasAuthorship W4300861664A5005039657 @default.
- W4300861664 hasAuthorship W4300861664A5005507431 @default.
- W4300861664 hasAuthorship W4300861664A5010789029 @default.
- W4300861664 hasAuthorship W4300861664A5023165801 @default.