Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300871729> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4300871729 abstract "We prove a generalization of the Edwards-Walsh Resolution Theorem: Theorem: Let G be an abelian group for which $P_G$ equals the set of all primes $mathbb{P}$, where $P_G={p in mathbb{P}: Z_{(p)}in$ Bockstein Basis $ sigma(G)}$. Let n in N and let K be a connected CW-complex with $pi_n(K)cong G$, $pi_k(K)cong 0$ for $0leq k< n$. Then for every compact metrizable space X with $Xtau K$ (i.e., with $K$ an absolute extensor for $X$), there exists a compact metrizable space Z and a surjective map $pi: Z to X$ such that (a) $pi$ is cell-like, (b) $dim Z leq n$, and (c) $Ztau K$." @default.
- W4300871729 created "2022-10-04" @default.
- W4300871729 creator A5055880791 @default.
- W4300871729 date "2009-07-02" @default.
- W4300871729 modified "2023-09-27" @default.
- W4300871729 title "Bockstein basis and resolution theorems in extension theory" @default.
- W4300871729 doi "https://doi.org/10.48550/arxiv.0907.0491" @default.
- W4300871729 hasPublicationYear "2009" @default.
- W4300871729 type Work @default.
- W4300871729 citedByCount "0" @default.
- W4300871729 crossrefType "posted-content" @default.
- W4300871729 hasAuthorship W4300871729A5055880791 @default.
- W4300871729 hasBestOaLocation W43008717291 @default.
- W4300871729 hasConcept C105433845 @default.
- W4300871729 hasConcept C114614502 @default.
- W4300871729 hasConcept C118615104 @default.
- W4300871729 hasConcept C119238805 @default.
- W4300871729 hasConcept C12426560 @default.
- W4300871729 hasConcept C134306372 @default.
- W4300871729 hasConcept C136170076 @default.
- W4300871729 hasConcept C138268822 @default.
- W4300871729 hasConcept C138885662 @default.
- W4300871729 hasConcept C154945302 @default.
- W4300871729 hasConcept C2524010 @default.
- W4300871729 hasConcept C2778572836 @default.
- W4300871729 hasConcept C31498916 @default.
- W4300871729 hasConcept C33923547 @default.
- W4300871729 hasConcept C41008148 @default.
- W4300871729 hasConcept C41895202 @default.
- W4300871729 hasConcept C70710897 @default.
- W4300871729 hasConceptScore W4300871729C105433845 @default.
- W4300871729 hasConceptScore W4300871729C114614502 @default.
- W4300871729 hasConceptScore W4300871729C118615104 @default.
- W4300871729 hasConceptScore W4300871729C119238805 @default.
- W4300871729 hasConceptScore W4300871729C12426560 @default.
- W4300871729 hasConceptScore W4300871729C134306372 @default.
- W4300871729 hasConceptScore W4300871729C136170076 @default.
- W4300871729 hasConceptScore W4300871729C138268822 @default.
- W4300871729 hasConceptScore W4300871729C138885662 @default.
- W4300871729 hasConceptScore W4300871729C154945302 @default.
- W4300871729 hasConceptScore W4300871729C2524010 @default.
- W4300871729 hasConceptScore W4300871729C2778572836 @default.
- W4300871729 hasConceptScore W4300871729C31498916 @default.
- W4300871729 hasConceptScore W4300871729C33923547 @default.
- W4300871729 hasConceptScore W4300871729C41008148 @default.
- W4300871729 hasConceptScore W4300871729C41895202 @default.
- W4300871729 hasConceptScore W4300871729C70710897 @default.
- W4300871729 hasLocation W43008717291 @default.
- W4300871729 hasLocation W43008717292 @default.
- W4300871729 hasOpenAccess W4300871729 @default.
- W4300871729 hasPrimaryLocation W43008717291 @default.
- W4300871729 hasRelatedWork W1990715765 @default.
- W4300871729 hasRelatedWork W1992078307 @default.
- W4300871729 hasRelatedWork W1999524532 @default.
- W4300871729 hasRelatedWork W2000448223 @default.
- W4300871729 hasRelatedWork W2046890755 @default.
- W4300871729 hasRelatedWork W2078262784 @default.
- W4300871729 hasRelatedWork W2082128351 @default.
- W4300871729 hasRelatedWork W2085033187 @default.
- W4300871729 hasRelatedWork W2328167011 @default.
- W4300871729 hasRelatedWork W2962690398 @default.
- W4300871729 isParatext "false" @default.
- W4300871729 isRetracted "false" @default.
- W4300871729 workType "article" @default.