Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300893269> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4300893269 abstract "The impact of the environment on graphene's properties such as strain, charge density, and dielectric environment can be evaluated by Raman spectroscopy. These environmental interactions are not trivial to determine, since they affect the spectra in overlapping ways. Data preprocessing such as background subtraction and peak fitting is typically used. Moreover, collected spectroscopic data vary due to different experimental setups and environments. Such variations, artifacts, and environmental differences pose a challenge in accurate spectral analysis. In this work, we developed a deep learning model to overcome the effects of such variations and classify graphene Raman spectra according to different charge densities and dielectric environments. We consider two approaches: deep learning models and machine learning algorithms to classify spectra with slightly different charge density or dielectric environment. These two approaches show similar success rates for high Signal-to-Noise data. However, deep learning models are less sensitive to noise. To improve the accuracy and generalization of all models, we use data augmentation through additive noise and peak shifting. We demonstrated the spectra classification with 99% accuracy using a convolutional neural net (CNN) model. The CNN model is able to classify Raman spectra of graphene with different charge doping levels and even subtle variation in the spectra between graphene on SiO$_2$ and graphene on silanized SiO$_2$. Our approach has the potential for fast and reliable estimation of graphene doping levels and dielectric environments. The proposed model paves the way for achieving efficient analytical tools to evaluate the properties of graphene." @default.
- W4300893269 created "2022-10-04" @default.
- W4300893269 creator A5001970771 @default.
- W4300893269 creator A5059383206 @default.
- W4300893269 creator A5060209700 @default.
- W4300893269 date "2022-02-24" @default.
- W4300893269 modified "2023-09-25" @default.
- W4300893269 title "Identifying charge density and dielectric environment of graphene using Raman spectroscopy and deep learning" @default.
- W4300893269 doi "https://doi.org/10.48550/arxiv.2203.00431" @default.
- W4300893269 hasPublicationYear "2022" @default.
- W4300893269 type Work @default.
- W4300893269 citedByCount "0" @default.
- W4300893269 crossrefType "posted-content" @default.
- W4300893269 hasAuthorship W4300893269A5001970771 @default.
- W4300893269 hasAuthorship W4300893269A5059383206 @default.
- W4300893269 hasAuthorship W4300893269A5060209700 @default.
- W4300893269 hasBestOaLocation W43008932691 @default.
- W4300893269 hasConcept C115961682 @default.
- W4300893269 hasConcept C119857082 @default.
- W4300893269 hasConcept C120665830 @default.
- W4300893269 hasConcept C121332964 @default.
- W4300893269 hasConcept C133386390 @default.
- W4300893269 hasConcept C150708132 @default.
- W4300893269 hasConcept C154945302 @default.
- W4300893269 hasConcept C171250308 @default.
- W4300893269 hasConcept C192562407 @default.
- W4300893269 hasConcept C30080830 @default.
- W4300893269 hasConcept C30475298 @default.
- W4300893269 hasConcept C40003534 @default.
- W4300893269 hasConcept C41008148 @default.
- W4300893269 hasConcept C49040817 @default.
- W4300893269 hasConcept C57863236 @default.
- W4300893269 hasConcept C62520636 @default.
- W4300893269 hasConcept C81363708 @default.
- W4300893269 hasConcept C99498987 @default.
- W4300893269 hasConceptScore W4300893269C115961682 @default.
- W4300893269 hasConceptScore W4300893269C119857082 @default.
- W4300893269 hasConceptScore W4300893269C120665830 @default.
- W4300893269 hasConceptScore W4300893269C121332964 @default.
- W4300893269 hasConceptScore W4300893269C133386390 @default.
- W4300893269 hasConceptScore W4300893269C150708132 @default.
- W4300893269 hasConceptScore W4300893269C154945302 @default.
- W4300893269 hasConceptScore W4300893269C171250308 @default.
- W4300893269 hasConceptScore W4300893269C192562407 @default.
- W4300893269 hasConceptScore W4300893269C30080830 @default.
- W4300893269 hasConceptScore W4300893269C30475298 @default.
- W4300893269 hasConceptScore W4300893269C40003534 @default.
- W4300893269 hasConceptScore W4300893269C41008148 @default.
- W4300893269 hasConceptScore W4300893269C49040817 @default.
- W4300893269 hasConceptScore W4300893269C57863236 @default.
- W4300893269 hasConceptScore W4300893269C62520636 @default.
- W4300893269 hasConceptScore W4300893269C81363708 @default.
- W4300893269 hasConceptScore W4300893269C99498987 @default.
- W4300893269 hasLocation W43008932691 @default.
- W4300893269 hasOpenAccess W4300893269 @default.
- W4300893269 hasPrimaryLocation W43008932691 @default.
- W4300893269 hasRelatedWork W1996900782 @default.
- W4300893269 hasRelatedWork W2007105916 @default.
- W4300893269 hasRelatedWork W2083700584 @default.
- W4300893269 hasRelatedWork W2325323159 @default.
- W4300893269 hasRelatedWork W2337926734 @default.
- W4300893269 hasRelatedWork W2970225897 @default.
- W4300893269 hasRelatedWork W3021430260 @default.
- W4300893269 hasRelatedWork W3027997911 @default.
- W4300893269 hasRelatedWork W4287776258 @default.
- W4300893269 hasRelatedWork W3009789068 @default.
- W4300893269 isParatext "false" @default.
- W4300893269 isRetracted "false" @default.
- W4300893269 workType "article" @default.