Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300960324> ?p ?o ?g. }
- W4300960324 endingPage "2034" @default.
- W4300960324 startingPage "2002" @default.
- W4300960324 abstract "Solar power integration in electrical grids is complicated due to dependence on volatile weather conditions. To address this issue, continuous research and development is required to determine the best machine learning (ML) algorithm for PV solar power output forecasting. Existing studies have established the superiority of the artificial neural network (ANN) and random forest (RF) algorithms in this field. However, more recent studies have demonstrated promising PV solar power output forecasting performances by the decision tree (DT), extreme gradient boosting (XGB), and long short-term memory (LSTM) algorithms. Therefore, the present study aims to address a research gap in this field by determining the best performer among these 5 algorithms. A data set from the United States’ National Renewable Energy Laboratory (NREL) consisting of weather parameters and solar power output data for a monocrystalline silicon PV module in Cocoa, Florida was utilized. Comparisons of forecasting scores show that the ANN algorithm is superior as the ANN16 model produces the best mean absolute error (MAE), root mean squared error (RMSE) and coefficient of determination (R2) with values of 0.4693, 0.8816 W, and 0.9988, respectively. It is concluded that ANN is the most reliable and applicable algorithm for PV solar power output forecasting." @default.
- W4300960324 created "2022-10-04" @default.
- W4300960324 creator A5008179908 @default.
- W4300960324 creator A5010789167 @default.
- W4300960324 creator A5015626275 @default.
- W4300960324 creator A5053370863 @default.
- W4300960324 creator A5058093937 @default.
- W4300960324 creator A5081620564 @default.
- W4300960324 creator A5081904302 @default.
- W4300960324 creator A5084071339 @default.
- W4300960324 date "2022-10-03" @default.
- W4300960324 modified "2023-09-30" @default.
- W4300960324 title "Investigating photovoltaic solar power output forecasting using machine learning algorithms" @default.
- W4300960324 cites W1560739766 @default.
- W4300960324 cites W1977098485 @default.
- W4300960324 cites W2018439854 @default.
- W4300960324 cites W2050700668 @default.
- W4300960324 cites W2114125063 @default.
- W4300960324 cites W2119945414 @default.
- W4300960324 cites W2259944928 @default.
- W4300960324 cites W2284835736 @default.
- W4300960324 cites W2402682637 @default.
- W4300960324 cites W2481243666 @default.
- W4300960324 cites W2558903719 @default.
- W4300960324 cites W2567289819 @default.
- W4300960324 cites W2584729650 @default.
- W4300960324 cites W2586724941 @default.
- W4300960324 cites W2610219179 @default.
- W4300960324 cites W2610635404 @default.
- W4300960324 cites W2621900912 @default.
- W4300960324 cites W2649933454 @default.
- W4300960324 cites W2743306721 @default.
- W4300960324 cites W2751698537 @default.
- W4300960324 cites W2760506659 @default.
- W4300960324 cites W2763849376 @default.
- W4300960324 cites W2766295554 @default.
- W4300960324 cites W2769487452 @default.
- W4300960324 cites W2770709890 @default.
- W4300960324 cites W2774603473 @default.
- W4300960324 cites W2774845821 @default.
- W4300960324 cites W2781167107 @default.
- W4300960324 cites W2787944342 @default.
- W4300960324 cites W2790625295 @default.
- W4300960324 cites W2801596954 @default.
- W4300960324 cites W2803160193 @default.
- W4300960324 cites W2803669726 @default.
- W4300960324 cites W2803978172 @default.
- W4300960324 cites W2811475562 @default.
- W4300960324 cites W2884906228 @default.
- W4300960324 cites W2888823774 @default.
- W4300960324 cites W2891765392 @default.
- W4300960324 cites W2899125947 @default.
- W4300960324 cites W2899617362 @default.
- W4300960324 cites W2911705200 @default.
- W4300960324 cites W2917491574 @default.
- W4300960324 cites W2920927670 @default.
- W4300960324 cites W2941419477 @default.
- W4300960324 cites W2950607358 @default.
- W4300960324 cites W2950683703 @default.
- W4300960324 cites W2963665875 @default.
- W4300960324 cites W2964321282 @default.
- W4300960324 cites W2968516859 @default.
- W4300960324 cites W2972487051 @default.
- W4300960324 cites W2976858096 @default.
- W4300960324 cites W2979673320 @default.
- W4300960324 cites W2979777156 @default.
- W4300960324 cites W2989322841 @default.
- W4300960324 cites W2990792561 @default.
- W4300960324 cites W2991020813 @default.
- W4300960324 cites W2998878989 @default.
- W4300960324 cites W2998962218 @default.
- W4300960324 cites W2999092792 @default.
- W4300960324 cites W3004832875 @default.
- W4300960324 cites W3007134619 @default.
- W4300960324 cites W3008544338 @default.
- W4300960324 cites W3010047009 @default.
- W4300960324 cites W3010738824 @default.
- W4300960324 cites W3011512429 @default.
- W4300960324 cites W3012038956 @default.
- W4300960324 cites W3014822860 @default.
- W4300960324 cites W3017881119 @default.
- W4300960324 cites W3025103497 @default.
- W4300960324 cites W3032402352 @default.
- W4300960324 cites W3034776565 @default.
- W4300960324 cites W3038070293 @default.
- W4300960324 cites W3038497546 @default.
- W4300960324 cites W3087196177 @default.
- W4300960324 cites W3092786229 @default.
- W4300960324 cites W3105640742 @default.
- W4300960324 cites W3107335993 @default.
- W4300960324 cites W3115646810 @default.
- W4300960324 cites W3126094341 @default.
- W4300960324 cites W3133357608 @default.
- W4300960324 cites W3137746357 @default.
- W4300960324 cites W3140660742 @default.
- W4300960324 cites W3166736235 @default.
- W4300960324 cites W3175687528 @default.
- W4300960324 cites W3177082483 @default.