Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300960857> ?p ?o ?g. }
- W4300960857 endingPage "095440702211260" @default.
- W4300960857 startingPage "095440702211260" @default.
- W4300960857 abstract "Amphibious wheel-track vehicle (AWTV) can change the vertical load of the wheels and the tracks through the active hydro-pneumatic suspension system, which shows significant advantages in terms of maneuverability and road passing ability. However, AWTV is a strong nonlinear system. The irregularity of the road, and coupling characteristics between the vertical load of the wheel-tracks and the terrain will greatly affect the tractive efficiency of the whole vehicle. Therefore, how to effectively distribute the vertical load between the wheel and the track to improve the tractive efficiency of the whole vehicle is still a huge challenge. To address the above problems, based on the neural network (NN) and particle swarm optimization (PSO) algorithm, vertical load distribution strategy of the AWTV is proposed to improve its traction efficiency under different driving road in this paper. Firstly, the coupling dynamics model of AWTV with road and hydraulic system dynamics model of active suspension is established; Secondly, the wheel-track terrain model is built in EDEM-Recurdyn to collect data of vertical load and traction efficiency under the different soils and speeds, and the coupling function is obtained through NN; Then, the optimal vertical load of each axle is optimized through PSO; Finally, the feasibility and effectiveness of the strategy are verified by the simulation analysis under different road conditions and distribution strategies. The simulation and test results demonstrate that the proposed vertical load distribution strategy based on NN-PSO can effectively improve the traction performance of the AWTV in complex terrain environment, and have relatively superior control characteristics." @default.
- W4300960857 created "2022-10-04" @default.
- W4300960857 creator A5019783505 @default.
- W4300960857 creator A5028693742 @default.
- W4300960857 creator A5063259402 @default.
- W4300960857 creator A5072985275 @default.
- W4300960857 creator A5077533270 @default.
- W4300960857 creator A5088885484 @default.
- W4300960857 date "2022-10-03" @default.
- W4300960857 modified "2023-09-26" @default.
- W4300960857 title "Vertical load distribution strategy of amphibious wheel-track vehicle using neural network and particle swarm optimization" @default.
- W4300960857 cites W2054644626 @default.
- W4300960857 cites W2063906323 @default.
- W4300960857 cites W2326536963 @default.
- W4300960857 cites W2514399432 @default.
- W4300960857 cites W2517113494 @default.
- W4300960857 cites W2526035569 @default.
- W4300960857 cites W2552627614 @default.
- W4300960857 cites W2778498800 @default.
- W4300960857 cites W2801303358 @default.
- W4300960857 cites W2811278563 @default.
- W4300960857 cites W2889496596 @default.
- W4300960857 cites W2909589143 @default.
- W4300960857 cites W2944997370 @default.
- W4300960857 cites W2945238877 @default.
- W4300960857 cites W2952157625 @default.
- W4300960857 cites W2969633885 @default.
- W4300960857 cites W2969965975 @default.
- W4300960857 cites W2990081678 @default.
- W4300960857 cites W2991482591 @default.
- W4300960857 cites W3000859416 @default.
- W4300960857 cites W3001018125 @default.
- W4300960857 cites W3022328206 @default.
- W4300960857 cites W3035615397 @default.
- W4300960857 cites W3046131046 @default.
- W4300960857 cites W3078357177 @default.
- W4300960857 cites W3082917060 @default.
- W4300960857 cites W3084070596 @default.
- W4300960857 cites W3089442372 @default.
- W4300960857 cites W3109538146 @default.
- W4300960857 cites W3122590917 @default.
- W4300960857 cites W3123739768 @default.
- W4300960857 cites W3140989686 @default.
- W4300960857 cites W3149990852 @default.
- W4300960857 cites W4210385848 @default.
- W4300960857 doi "https://doi.org/10.1177/09544070221126021" @default.
- W4300960857 hasPublicationYear "2022" @default.
- W4300960857 type Work @default.
- W4300960857 citedByCount "0" @default.
- W4300960857 crossrefType "journal-article" @default.
- W4300960857 hasAuthorship W4300960857A5019783505 @default.
- W4300960857 hasAuthorship W4300960857A5028693742 @default.
- W4300960857 hasAuthorship W4300960857A5063259402 @default.
- W4300960857 hasAuthorship W4300960857A5072985275 @default.
- W4300960857 hasAuthorship W4300960857A5077533270 @default.
- W4300960857 hasAuthorship W4300960857A5088885484 @default.
- W4300960857 hasConcept C105341887 @default.
- W4300960857 hasConcept C11413529 @default.
- W4300960857 hasConcept C119857082 @default.
- W4300960857 hasConcept C127413603 @default.
- W4300960857 hasConcept C129727815 @default.
- W4300960857 hasConcept C154945302 @default.
- W4300960857 hasConcept C161840515 @default.
- W4300960857 hasConcept C171146098 @default.
- W4300960857 hasConcept C18903297 @default.
- W4300960857 hasConcept C202444582 @default.
- W4300960857 hasConcept C2775924081 @default.
- W4300960857 hasConcept C2777946747 @default.
- W4300960857 hasConcept C32520587 @default.
- W4300960857 hasConcept C33923547 @default.
- W4300960857 hasConcept C38834483 @default.
- W4300960857 hasConcept C41008148 @default.
- W4300960857 hasConcept C44154836 @default.
- W4300960857 hasConcept C47446073 @default.
- W4300960857 hasConcept C50644808 @default.
- W4300960857 hasConcept C5961521 @default.
- W4300960857 hasConcept C66938386 @default.
- W4300960857 hasConcept C78519656 @default.
- W4300960857 hasConcept C85617194 @default.
- W4300960857 hasConcept C86803240 @default.
- W4300960857 hasConcept C89992363 @default.
- W4300960857 hasConceptScore W4300960857C105341887 @default.
- W4300960857 hasConceptScore W4300960857C11413529 @default.
- W4300960857 hasConceptScore W4300960857C119857082 @default.
- W4300960857 hasConceptScore W4300960857C127413603 @default.
- W4300960857 hasConceptScore W4300960857C129727815 @default.
- W4300960857 hasConceptScore W4300960857C154945302 @default.
- W4300960857 hasConceptScore W4300960857C161840515 @default.
- W4300960857 hasConceptScore W4300960857C171146098 @default.
- W4300960857 hasConceptScore W4300960857C18903297 @default.
- W4300960857 hasConceptScore W4300960857C202444582 @default.
- W4300960857 hasConceptScore W4300960857C2775924081 @default.
- W4300960857 hasConceptScore W4300960857C2777946747 @default.
- W4300960857 hasConceptScore W4300960857C32520587 @default.
- W4300960857 hasConceptScore W4300960857C33923547 @default.
- W4300960857 hasConceptScore W4300960857C38834483 @default.
- W4300960857 hasConceptScore W4300960857C41008148 @default.
- W4300960857 hasConceptScore W4300960857C44154836 @default.